Research Progress of Application and Prospect of Functional Microorganisms Based on Synthetic Biology in Plant Industry
CHI Jia-Ni1, 2, GUO Ming-Zhang1, 2, LIU Yang-Er1, 2, XU Wen-Tao1, 2, *
1 College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; 2 Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
Abstract:Synthetic biology brings together engineering and the life sciences in order to design and construct new biological parts, devices and systems that do not currently exist in the natural world or to tweak the designs of existing biological systems. Compared with traditional transgenic technology, synthetic biology uses new technologies in genome design, synthesis and more effective molecular tools, which can develop new varieties and new technology applications more efficiently and extensively. Because synthetic biology has the characteristics of strong targeting, simple operation, short application period, and high sensitivity, the use of synthetic biology to replace traditional agricultural technology and biotechnology can bring great potential to the transformation of agricultural production. This article reviews the research progress of functional microorganisms based on synthetic biology in soil monitoring and repair, plant growth promotion, plant pathogen detection, agricultural product safety detection, plant natural product production, etc., and clarify the potential problems of synthetic biology used in planting production at this stage, analyze and propose solutions at the database level, technical level, security level, and regulatory level.
迟佳妮, 郭明璋, 刘洋儿, 许文涛. 基于合成生物学的功能微生物在种植业生产中的研究进展[J]. 农业生物技术学报, 2020, 28(9): 1688-1698.
CHI Jia-Ni, GUO Ming-Zhang, LIU Yang-Er, XU Wen-Tao. Research Progress of Application and Prospect of Functional Microorganisms Based on Synthetic Biology in Plant Industry. 农业生物技术学报, 2020, 28(9): 1688-1698.
[1] 关正君, 裴蕾, Schmidt M, 等. 2012.合成生物学生物安全风险评价与管理[J]. 生物多样性, 20(2):138-150. (Guan Z J, Pei L, Schmidt M, et al.2012. Assessment and management of biosafety in synthetic biology[J]. Biodiversity Science, 20(2):138-150.) [2] 刘树林, 龚俊. 2004. 细菌进化中的基因横向转移[J]. 中华微生物学和免疫学杂志, 24(6):498-504. (Liu S L, Gong J.2004. Horizontal gene transfer in bacterial evolution[J]. Chinese Journal of Microbiology and Immunology,24(6): 498-504.) [3] 王健, 刁治民, 张静, 等. 2006. 土壤微生物在促进植物生长方面的作用与发展前景[J]. 青海草业, 15(4): 20-26. (Wang J, Diao Y M, Zhang J.2006. The role and development prospect of soil microbes in promoting plant growth[J]. Qinghai Prataculture, 15(4): 20-26.) [4] 王秋霞, 郭美霞, 李园, 等. 2011. 氯化苦与1,3-二氯丙烯胶囊施用后在黄瓜及番茄果实中的残留检测[J]. 中国蔬菜, Z1: 88-91. (Wang Q X, Guo M X, Li Y, et al.2011. Residue detection in cucumber and tomato fruits after application of chloropicrin and 1,3-dichloropropene capsules[J]. China Vegetables, Z1: 88-91.) [5] 张彩凤. 2011. 细菌群体感应系统信号分子的分类及检测[J]. 生命科学仪器, 09(5): 52-53. (Zhang C F.2011. Classification and detection of signal molecules in bacterial quorum sensing system[J]. Life Science Instrument, 2011, 09(5):52-53.) [6] 朱泰承, 赵军, 李寅. 2015. 关于合成生物学发展与相关问题治理的思考[J]. 科学与社会, 5(1):13-19. (Zhu T C, Zhao J, Li Y.2015. Analysis of yield gap and limiting factors for wheat on the farmland[J]. Science and Society, 2015, 5(1):13-19.) [7] Arif K, Archana G, Desai A J.2012. Engineering heterologous iron siderophore complex utilization in Rhizobia: Effect on growth of peanut and pigeon pea plants[J]. Applied Soil Ecology, 53(1):65-73. [8] Branco R, Cristóvão A, Morais P V, et al.2013. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples[J]. PLoS ONE, 8(1): e54005. [9] Burén S, Young E M, Sweeny E A, et al.2017. Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 6(6):1043-1055. [10] Chakraborty T, Babu G, Alam A, et al.2008. GFP expressing bacterial biosensor to measure lead contamination in aquatic environment[J]. Current science, 94:800-805. [11] Chang M C Y, Eachus R A, Trieu W, et al.2007. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s[J]. Nature Chemical Biology, 3: 274-277. [12] Cheng H Y, Masiello C A, Valle I D, et al.2018. Ratiometric gas reporting: A nondisruptive approach to monitor gene expression in soils[J]. ACS Synthetic Biology, 7(3): 903-911. [13] Chong H, Ching C B.2016. Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR.[J]. Acs Synthetic Biology, 5(11):1290-1298. [14] Cuypers A, Plusquin M, Remans T, et al.2010.Cadmium stress: An oxidative challenge[J]. Biometals, 23(5):927-940. [15] de Lorenzo V.2009. Recombinant bacteria for environmental release: what went wrong and what we have learnt from it[J]. Clinical Microbiology and Infection, 15(Suppl. 1):63-65. [16] Döhlemann J, Wagner M, Happel C, et al.2017. A family of single copy repABC-type shuttle vectors stably maintained in the alpha-proteobacterium Sinorhizobium meliloti[J]. ACS Synthetic Biology, 6(6): 968-984. [17] Englund E, Andersen-Ranberg J, Miao R, et al.2015. Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide[J]. ACS Synthetic Biology, 4(12):1270-1278. [18] ETC Group. 2015. Outsmarting nature? Synthetic Biology and Climate Smart Agriculture[DB/OL]. http://www.etcgroup.org/content/outsmarting-nature/report [19] Gong T, Liu R H, Che Y, et al.2016. Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos[J]. Microbial Biotechnology, 9(6):792-800. [20] Gong T, Xu X, Che Y, et al.2017. Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane[J]. Scientific Reports, 7(1):7064. [21] Goold H, Wright P, Hailstones D.2018. Emerging opportunities for synthetic biology in agriculture[J]. Genes, 9(7):341. [22] Hernández A F, Parrón T, Tsatsakis A M, et al.2013. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health[J]. Toxicology, 307:136-145. [23] Jaishankar M, Tseten T, Anbalagan N, et al.2014. Toxicity, mechanism and health effects of some heavy metals[J]. Interdiscip Toxicol, 7(2): 60-72. [24] Jiménez J I, Miñambres B, García J L, et al.2010. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.[J]. Environmental Microbiology, 4(12): 824-841. [25] Kim A, Barcelo S J, Li Z.2015. SERS-based pesticide detection by using nanofinger sensors[J]. Nanotechnology, 26(1): 015502. [26] Kurumbang N P, Dvorak P, Bendl J, et al.2014. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant[J]. ACS Synthetic Biology, 3(3):172-181. [27] Lan W S, Gu J D, Zhang J L, et al.2006. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium[J]. International Biodeterioration and Biodegradation, 58(2):70-76. [28] Li S, Li Y, Smolke C D.2018. Strategies for microbial synthesis of high-value phytochemicals[J]. Nature Chemistry, 10(4): 395. [29] Mahbub K, Krishnan K, Naidu R, et al.2017. Development of a whole cell biosensor for the detection of inorganic mercury[J]. Environmental Technology & Innovation, 2017, 8: 64-70. [30] Mulchandani A, Rajesh.2011. Microbial biosensors for organophosphate pesticides[J]. Applied Biochemistry and Biotechnology, 165(2): 687-699. [31] Nikel P I, de Lorenzo V.2013. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene[J]. Metabolic Engineering, 15(1): 98-112. [32] Raushel F M.2002. Bacterial detoxification of organophosphate nerve agents[J]. Current Opinion in Microbiology, 5(3): 288-295. [33] Saunders M, Magnanti B L, Carreira S C, et al.2012. Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy[J]. Environmental Health A Global Access Science Source, 11(Suppl 1): S5. [34] Temme K, Zhao D, Voigt C A.2012. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca[J]. Proceedings of the National Academy of Sciences of the USA, 2012, 109(18): 7085-7090. [35] Toogood H S, Cheallaigh A N, Tait S, et al.2015. Enzymatic menthol production: One-pot approach using engineered Escherichia coli[J]. ACS Synthetic Biology, 4(10): 1112-1123. [36] Tsuruta H, Paddon C J, Eng D, et al.2009. High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli[J]. PLOS ONE, 4: e4489. [37] Toussaint M, Bontemps C, Besserer A, et al.2016. Whole-cell biosensor of cellobiose and application to wood decay detection[J]. Journal of Biotechnology, 239:39-46. [38] Whangsuk W, Thiengmag S, Dubbs J, et al.2016. Specific detection of the pesticide, chlorpyrifos, by a sensitive genetic-based whole cell biosensor[J]. Analytical Biochemistry, 493:11-13. [39] Wu C H, Le D, Mulchandani A, et al.2010. Optimization of a whole-cell cadmium sensor with a toggle gene circuit[J]. Biotechnology Progress, 25(3): 898-903. [40] Yang H, Liu F, Li Y, et al.2017. Reconstructing biosynthetic pathway of the plant-derived cancer chemopreventive-precursor glucoraphanin in Escherichia coli [J]. ACS Synthetic Biology, 7(1):121-131. [41] Yang J, Xie X, Xiang N, et al.2018. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proceedings of the National Academy of Sciences of the USA, 115(36): E8509-E8517. [42] Zu?n?iga A, Francisco D L F, Federici F, et al.2018. An engineered device for indoleacetic acid production under quorum sensing signals enables Cupriavidus pinatubonensis JMP134 to stimulate plant growth[J]. ACS Synthetic Biology, 7(6): 1519-1527. [43] Zuo Z Q, Gong T, Che Y, et al.2015. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil[J]. Biodegradation, 26(3):223-233.