Immunogenicity Test of GGTA1, GGTA1/β4GalNT2 Different Genotypes Knockout Pigs (Sus scrofa)
LIU Chun-Chen1, DU Min-Jie2, XING Xiang-Yang2, LU Lin1, *, PAN Deng-Ke3, *
1 Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; 2 Chengdu Clonorgan Biotechnology Co., LTD., Chengdu 610041, China; 3 Institute of Organ Transplantation, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu 610072, China;
Abstract:Immune rejection is the main reason for limiting xenotransplantation. In this paper, α-1, 3-galactosyltransferase (GGTA1) and GGTA1/β1, 4 N-acetylgalactosaminyltransferase (β4GalNT2) gene knockout cloned pigs (Sus scrofa) were selected for donors of low-immunogenic xenotransplantation organ transplants. The expression of GGTA1/β4GalNT2 gene was identified by integrating peripheral blood mononuclear cells (PBMC) with fluorescein isothiocyanate-griffonia simplicifolia isolectin B4 (FITC-GSIB4) and fluorescein isothiocyanate Dolichos bliflorus agglutinin (FITC-DBA); the effect of GGTA1/β4GalNT2 double gene knockout on the health of Bama mini-pigs was assessed by blood changes in physiological and biochemical indicators; analysis of ideal receptor blood type was by detecting IgG binding of mixed PBMC of different genetically modified pigs and human serum of ABO blood group system after incubation; screening for low immunity primary donor genotype was bdye tecting IgG binding of mixed of PBMC of different genetically modified pigs and human (Homo sapiens) blood serum of AB blood group system after incubation. GSIB4 and DBA staining results showed that the expression of corresponding antigens on the surface of GGTA1/β-4GalNT2 gene knockout pig cells decreased; physiological and biochemical tests showed that GGTA1-/- and GGTA1-/-/β4GalNT2+/- were compared with wild type (WT) Bama mini-pigs, genetically modified pigs had no significant differences in all indicators, GGTA1-/-/β4GalNT2-/- gene modified pigs had significantly reduced neutrophil counts, and significantly increased creatine kinase and creatinine; the results of incubation of serum of different blood types showed that compared with the amount of IgG binding of type A, B and O blood, the binding of IgG in type AB was the lowest, and it was the ideal recipient blood type; GGTA1-/- and GGTA1/β-4GalNT2 knockout pigs, compared with Bama mini-pigs, had the lowest binding amount. The GGTA1/β-4GalNT2 knockout Bama mini-pigs were genetically stable, they also had reduced immunogenicity and immune rejection reactions with AB serum human serum were lowest. This study provides immunorejection data for future xenotransplantation clinical trials.
刘春晨, 杜敏杰, 邢向阳, 鲁琳, 潘登科. GGTA1、GGTA1/β4GalNT2不同基因型敲除猪免疫原性检测[J]. 农业生物技术学报, 2020, 28(9): 1587-1594.
LIU Chun-Chen, DU Min-Jie, XING Xiang-Yang, LU Lin, PAN Deng-Ke. Immunogenicity Test of GGTA1, GGTA1/β4GalNT2 Different Genotypes Knockout Pigs (Sus scrofa). 农业生物技术学报, 2020, 28(9): 1587-1594.
[1] 胡岩松, 袁彦平. 2001. 异种器官移植的研究进展[J]. 实验动物科学与管理, 018(03): 38-40. (Hu Y S, Yuan Y P.2001. Research progress of xenotransplantation[J]. Experimental Animal Science and Management, 018(03): 38-40. [2] 李楚, 任雪洋, 李琳, 等. 2019. GGTA1/β4GalNT2双基因敲除近交系五指山小型猪的建立[J]. 南京医科大学学报(自然科学版), 039(006): 835-840. (Li C, Ren X Y, Li L, et al.2019. Generation of inbred Wuzhishan miniature pigs with GGTA1/β4GalNT2 double gene knockout[J]. Journal of Nanjing Medical University (natural science edition), 039(006): 835-840. [3] 李文玲, 鲍磊, 肖磊. 2014. 基因修饰猪作为异种器官移植供体的研究进展[J]. 中国细胞生物学学报, 36(9): 1300-1305. (Li W L, Bao L, Xiao L.2014. Progress in the study of genetically modified pigs as xenotransplantation donors[J]. Cell Biology, 36(9): 1300-1305. [4] 李智方, 冯冲, 纪慧丽, 等. 2015. 绿色荧光蛋白在α-1,3半乳糖基转移酶敲除猪组织器官的表达分析[J]. 遗传, 37(12): 1211-1217. (Li Z F, Feng C, Ji H L, et al.2015. Expression analysis of green fluorescent protein in pig tissues and organs of 1,3 galactosyl transferase knockout[J]. Genetics, 37(12): 1211-1217. [5] 宋宗培, 郭蝶, 蔡志明. 2018. 异种器官移植免疫生物学研究进展[J]. 器官移植, 9(3): 236-238. (Song Z P, Guo D, Cai Z M.2018. Advances in immunobiology of xenotransplantation[J]. Organ Transplantation, 9(3): 236-238. [6] 唐雨婷, 高景波, 龙川, 等. 2017. CRISPR/Cas9介导的β4GalNT2基因敲除猪制备[J]. 农业生物技术学报, 25(10): 1697-1705. (Tang Y T, Gao J B, Long C, et al.2017. Generation of β4GalNT2 Gene Knockout Pigs (Sus scrofa) via CRISPR/Cas9[J]. Journal of Agricultural Biotechnology, 25(10): 1697-1705. [7] 张青, 周翠冰, 戴一凡, 等. 2017. 神经细胞异种移植的研究进展[J]. 器官移植, 8(4): 328-332. (Zhang Q, Zhou C B, Dai Y F, et al.2017. Research progress of nerve cell xenotransplantation[J]. Organ Transplantation, 8(4): 328-332. [8] 张运海, 潘登科, 孙国杰, 等. 2007. 猪体外受精胚胎、孤雌激活胚胎以及体细胞核移植胚胎的体外培养[J]. 中国农业科学, 40(3): 588-593. (Zhang Y H, Pan D K, Sun G J, et al.2007. In vitro culture of in vitro fertilization embryo, parthenogenetic activated embryo and somatic cell nuclear transfer embryo[J]. Scientia Agricultura Sinica, 40(3): 588-593. [9] 周明, 邓阳阳, 戴一凡, 等. 2017. 猪肺异种移植的研究进展与发展方向[J]. 器官移植, 008(6): 476-479. (Zhou M, Deng Y Y, Dai Y F, et al.2017. Research progress and development direction of pig lung xenotransplantation[J]. Organ Transplantation, 008(6): 476-479. [10] Byrne G, Ahmad-Villiers S, Du Z, et al.2018. B4GALNT2 and xenotransplantation: A newly appreciated xenogeneic antigen[J]. Xenotransplantation, 25: e12394. [11] Dall'Olio F, Malagolini N, Chiricolo M, et al.2014. The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2[J]. Biochimica Et Biophysica Acta, 1840(1): 443-453. [12] Groux-Degroote S, Wavelet C, Krzewinski-Recchi M A, et al.2014. B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract[J]. International Journal of Biochemistry & Cell Biology, 53: 442-449. [13] Montiel M D, Krzewinski-Recchi M A, Delannoy P, et al.2003. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: Evidence for an unusual extended cytoplasmic domain[J]. The Biochemical Journal, 373(2): 369-379. [14] Padler-Karavani V, Varki A.2011. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk[J]. Xenotransplantation, 18(1): 1-5. [15] Serafini-Cessi F, Dall'Olio F, Malagolini N.1986. Characterization of N-acetyl-β-d-galactosaminyl-transferase from guinea-pig kidney involved in the biosynthesis of Sda antigen associated with tamm-horsfall glycoprotein[J]. Carbohydrate Research, 151: 65-76. [16] Staubach F, Kunzel S, Baines A C, et al.2012. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice[J]. The International Society for Microbial Ecology Journal, 6(07): 1345-1355. [17] Takahiro N, Kiyohiko A, Takashi S, et al.2019. Identification of mammalian glycoproteins with type-I LacdiNAc structures synthesized by the glycosyltransferase B3GALNT2[J]. The Journal of Biological Chemistry, 294(18): 7433-7444. [18] Wang Z Y, Paris L L, Chihara R K, et al.2012. Immortalized porcine liver sinusoidal endothelial cells: An in vitro model of xenotransplantation-induced thrombocytopenia[J]. Xenotransplantation, 19(04): 249-255. [19] Yamamoto F, Yamamoto M.2001. Molecular genetic basis of porcine histo-blood group AO system[J]. Blood, 97(10): 3308-3310. [20] Zhang R, Wang Y, Chen L, et al.2018. Reducing immunogenicity of porcine bioprosthetic heart valves via GGTA1/β4GalNT2/CMAH Gene Targeting[J]. Transplantation, 102(1): S316.