Abstract:Segregation distortion is an ubiquitous phenomenon in nature and an important driving force for biological evolution. With the development and progress of molecular marker technology, a large number of segregation distortion phenomena are reported in the genetic research of different crops and the proportion of marker segregation distortion and genetic effect vary according to species, population, marker type, etc., while there were segregation distortion regions (SDRs). In order to investigate the phenomenon of maize (Zea mays) segregation distortion and its causes, a F8 population consisting of 198 recombinant inbred lines (RIL) was used in the study, which derived from a cross between a tropical maize inbred line B31-3 and a temperate maize inbred line HZ4. A total of 747 SNPs, covering 10 maize chromosomes, were detected with polymorphism between parent B31-3 and HZ4. Segregation distortion analysis was performed among the 747 SNPs for the RIL population. The results of chi-square test (χ2 =96.92, >χ20.05=6.63)(P<0.05), showed that the distribution proportion of the female B31-3 and male HZ4 genotypes deviated from the theoretical ratio of 1∶1 in RIL population and the genetic contribution rate of female B31-3 to offspring was higher than that of male HZ4. The result indicated that 279 SNPs (37.3%) showed the genetic distortion (P<0.05). Of the total segregation distortion SNPs, 194 SNPs (69.5%) deviated toward female parent B31-3, while 85 SNPs (30.5%) deviated toward male parent HZ4. Totally, 10 SDRs were detected among 6 chromosomes. 3 SDRs were distorted to HZ4, while 7 SDRs were skewed to B31-3, which showed female parent gametophytes had an competitive advantage in forming a zygote in this study. There were 6~64 segregation distortion SNPs in SDRs and the span of SDRs were 3.69~78.11 cM. SDR5-1 and SDR5-3, detected in this study, were located in near regions where gametophyte genes related to segregation distortion had been reported. Additionally, in the study, the RIL population was affected by high temperature in the group building process. So, the occurrence of segregation distortion and the formation of SDRs might be related to gametic selection and high temperature environment in this study. This study provides basic data for understanding the law of segregation distortion of maize.
1 范智权, 孙加雷, 单建伟, 等. 2015. 杂种偏分离的遗传和分子机理研究进展[J]. 遗传, 37(2): 148-156. (Fan Z Q, Sun J L, Dan J W, et al.2015. Research progress on genetic and molecular mechanisms of hybrid segregation distortion[J]. Hereditas, 37(2): 148-156.) 2 李振, 雷伟, 普世皇, 等. 2015. 温度对水稻雌配子体基因型选择及其后代表型遗传分离的影响[J].云南农业大学学报, 30(4): 511-521. (Li Z, Lei W, Pu S H, et al.2015. Female gametophyte genotype selection and its progenies phenotypic genetic segregation in rice under extreme temperature[J]. Journal of Yunnan Agricultural University, 30(4): 511-521.) 3 刘刚, 许盛宝, 倪中福, 等. 2007. 小麦RIL群体SSR标记偏分离的遗传分析[J]. 农业生物技术学报, 15(5): 828-833. (Liu G, Xue S B, Ni Z F, et al.2007. Genetic analysis of segregation distortion of molecular markers in wheat RIL population[J]. Journal of Agricultural Biotechnology, 15(5): 828-833.) 4 刘海燕, 崔金腾, 高用明. 2009. 遗传群体偏分离研究进展[J]. 植物遗传资源学报, 10(4): 613-617. (Liu H Y, Cui J T, Gao Y M.2009. Progress of segregation distortion[J]. Journal of Plant Genetic Resources, 10(4): 613-617.) 5 宋宪亮, 孙学振, 张天真. 2006. 偏分离及对植物遗传作图的影响[J]. 农业生物技术学报, 14(2): 286-292. (Song X L, Sun X Z and Zhang T Z.2006. Segregation distortion and its effect on genetic mapping in plants[J]. Journal of Agricultural Biotechnology, 14(2): 286-292.) 6 王永军, 吴晓雷, 贺超英, 等. 2003. 大豆作图群体检验与调整后构建的遗传图谱[J]. 中国农业科学, 36(11) : 1254-1260. (Wang Y J, Wu X L, He C Y, et al.A soybean genetic linkage map constructed after the mapping population being tested and adjusted[J]. Scientia Agricultura Sinica, 36(11): 1254-1260. 7 许理文, 段民孝, 宋伟, 等. 2015. 玉米生物诱导孤雌生殖DH 群体的SNP 偏分离分析[J]. 玉米科学, 23(3): 8-14. (Xu L W, Duan M X, Song W, et al.2015. Segregation distortion study on bio-induced parthenogenesis-derived doubled haploid lines of maize by SNP[J]. Journal of Maize Sciences, 23(3): 8-14.) 8 严建兵, 汤华, 黄益勤, 等. 2003.玉米F2群体分子标记偏分离的遗传分析[J]. 遗传学报, 30(10): 913-918. (Yan J B, Tang H, Huang Y Q, et al.2003. Genetic analysis of segregation distortion of molecular markers in maize F2 population[J]. Acta Genetic Sinica, 30(10): 913-918.) 9 姚焱, 卢永根, 刘向东, 等. 2003. SSR标记鉴定栽培稻杂种F1花粉愈伤组织基因型的偏态分离[J]. 中国农业科学, 36(12): 1427-1431. (Yao Y, Lu Y G, Liu X D, et al.2003. Detection of distorted segregation in genotype of pollen calli derived from hybrid F1 of cultivated rice (Oryza sativa L.) using SSR markers[J]. Scientia Agricultura Sinica, 36(12): 1427-1431.) 10 曾亚文, 李自超, 杨忠义, 等. 2001. 云南地方稻种籼粳亚种的生态群分类及其地理分布[J]. 作物学报, 27(1): 15-20. (Zeng Y W, Li Z C, Yang Z Y, et al.2001. Geographical distribution and cline classification of Indica/Japonica subspecies of yunnan local rice resources[J]. Acta Agronomica Sinica, 27(1): 15-20.) 11 张帆, 万雪琴, 潘光堂. 2006. 玉米F2群体分子标记偏分离的遗传分析[J]. 作物学报, 32(9): 1391-1396. (Zhang F, Wang X Q, Pang G T.2006. Genetic analysis of segregation distortion of molecular markers in maize F2 population[J]. Acta Agronomica Sinica, 32(9): 1391-1396. ) 12 周雅琴, 韩志刚. 2017. 近64 年重庆地区夏季高温分析[J]. 安徽农业科学, 45(33): 189-191. (Zhou Y Q, Han Z G.2017. Analysis of summer high temperature in chongqing in resent 64 years[J]. Jounal of Anhui Agricultural Science, 45(33): 189-191.) 13 周汝平, 李淑君, 杨华, 等. 2017. 玉米RIL群体SSR分子标记偏分离的遗传分析[J]. 西南农业学报, 30(1): 15-19. (Zhou R P, Li S J, Yang H, et al.2017. Genetic analysis of segregation distortion of molecular markers in maize RIL population[J]. Southwest China Jounal of Agricultural Sciences, 30(1).15-19.) 14 邹海平, 张京红, 陈小敏, 等. 2015. 海南岛农业气候资源的时空变化特征[J]. 中国农业气象, 36(4): 417-427. (Zou H P, Zhang J H, Cheng X M, et al.2015. Spatiotemporal change characteristics of agricultural climate resources in hainan island[J]. Chinese Journal of Agrometeorology, 36(4): 417-427.) 15 Austin D F, Lee M.1996 Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J]. Theoretical and Applied Genetics, 92(7): 817-826. 16 Cheng R, Saito A, Takano Y, et al.1996. Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map[J]. Theoretical and Applied Genetics, 93(4): 494-502. 17 Kozielska M, Weissing F J, Beukeboom L W, et al.2010. Segregation distortion and the evolution of sex-determining mechanisms[J]. Heredity, 104(1): 100-112. 18 Li C L, Bai G H, Chao S M, et al.2015. A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat[J]. BioMed Research International, http://dx.doi.org/10.1155/2015/830618, pp.1-10. 19 Liu X, Guo L, You J, et al.2010. Progress of segregation distortion in genetic mapping of plants[J]. Research Journal Agronomy, 4(4): 78-83. 20 Lu H, Romero-Severson J and Bernardo R.2002. Chromosomal regions associated with segregation distortion in maize[J]. Theoretical and Applied Genetics, 105(4): 622~628. 21 Lyttle T W.1991. Segregation distorter[J]. Annual Review of Genetics, 25(1): 511-557. 22 Mangelsdorf P C and Jones D F.1926. The expression of mendelian factors in the gametophyte of maize[J]. Genetics, 11(5): 423-455. 23 Ottó T, Hanna W W, Rhonda C, et al.2006. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci[J]. Theoretical and Applied Genetics, 113(8): 1551-1561. 24 Tan C, Han Z M, Yu H H, et al.2013. QTL scanning for rice yield using a whole genome SNP array[J]. Journal of Genetics and Genomics, 40(12): 629-638. 25 Wang S H, Tan X L, Tan Y L, et al.2009. Segregation distortion detected in six rice F2 populations generated from reciprocal hybrids at three altitudes[J]. Genetics Research, 91(05): 345-353. 26 Xu X, Li L, Dong X, et al.2013. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize[J]. Journal of Experimental Botany, 64(4): 1083-1096. 27 Xu Y, Zhu L, Xiao J, et al.1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.)[J]. Molecular Genetics and Genomics, 253(5): 535-545. 28 Young H J and Stanton M L.1990. Influence of environmental quality on pollen competitive ability in wild radish[J]. Science, 248(4963): 1631-1633. 29 Zhou J Q, Gao Y Q, Jiang Y F, et al.2011. A SSR linkage map of maize×teosinte F2 population and analysis of segregation distortion[J]. Agricultural Sciences in China, 10(2): 166-174.