|
|
Advances in Research on Endophytes for Promoting the Sustainable Development of Traditional Chinese Medicinal Plant |
XIAO Tian-Yu, WANG Feng-Ru, YU Meng, KE Shao-Ying* |
College of Life Sciences, Hebei Agricultural University, Baoding 071000, China |
|
|
Abstract Plant endophytes represent a class of important microbial resources ubiquitously colonizing plant tissues and intracellular spaces, capable of secreting a variety of enzymes and novel secondary metabolites, which exhibit significant application potential across various fields, including agriculture, medicine, food, and horticulture. This article summarized the domestic and international research advancements regarding the contributions of endophytes to the growth and development of traditional Chinese medicinal materials, the accumulation of bioactive components, the mitigation of allelopathic effects, and the enhancement of stress resistance. It also explored the mechanisms by which endophytes improved to the yield and quality formation of traditional Chinese medicinal materials, aiming to provide a theoretical support for the application of endophytes in the cultivation of traditional Chinese medicinal materials and ultimately promote the protection of resources and the green and sustainable development of the industry.
|
Received: 11 December 2024
|
|
|
|
|
[1] 曹松, 曾志刚. 2012. 内生放线菌对鬼臼毒素的微生物转化[J]. 微生物学杂志, 32(1): 37-42. (Cao S, Zeng Z G.2012. Microbial transformation of podophyllotoxin by endophytic actinomycetes[J]. Journal of Microbiology, 32(1): 37-42.) [2] 程龙媛, 张国卉, 孙燕, 等. 2024. 药用植物-内生菌-根际微生物互作研究进展[J]. 中草药, 55(15): 5264-5273. (Cheng L Y, Zhang G H, Sun Y, et al.2024. Research progress on tripartite interaction of medicinal plants-endophytic fungi-rhizosphere microbes[J]. Chinese Traditional and Herbal Drugs, 55(15): 5264-5273.) [3] 杜佳慧, 徐伟芳, 杨晓冬, 等. 2022. 多花黄精产吲哚乙酸内生菌的分离筛选及其对黄精种子萌发的影响[J]. 生物技术通报, 38(12): 223-232. (Du J H, Xu W F, Yang X D, et al.2022. Isolation and screening of endophytes producing indole acetic acid from Polygonatum cyrtonema Hua. and its effect on seed germination of polygonatum[J]. Biotechnology Bulletin, 38(12): 223-232.) [4] 韩丽. 2023. 河北安国药用植物DSE物种多样性及其Cd耐受性研究[D]. 博士毕业论文, 河北大学, 导师: 贺学礼, pp: 77-89. (Han L.2023. Species diversity and Cd tolerance of dark septate endophytes in medicinalplant in Anguo, Hebei province[D]. Thesis for M.S., Hebei University, Supervisor: He X L, pp. 77-89.) [5] 韩英乾. 2018. 竹肉球内生菌多肽的分离纯化以及抗农业致病菌活性研究[D]. 硕士毕业论文, 西北农林科技大学, 导师: 陶虎, pp. 29-34. (Han Y Q.2018. Isolation and purification and fungicidal activities of peptide from Engleromyces goetzei P.Hennings[D]. Thesis for Ph.D., Northwest Agriculture and Forestry University, Supervisor: Tao H, pp. 29-34.) [6] 黄雪珍, 赵龙飞. 2023. 药用植物内生菌对宿主植物促生作用机制研究进展[J]. 微生物学通报, 50(4): 1653-1665. (Huang X Z, Zhao L F.2023. Mechanism of endophytes of medicinal plants in promoting the growth of host plants[J]. Microbiology China, 50(4): 1653-1665.) [7] 姬文秀, 李虎林, 冷雪, 等. 2019. 产ACC脱氨酶人参内生细菌的分离和促生特性分析[J]. 吉林农业大学学报, 41(2): 168-174. (Ji W X, Li H L, Leng X, et al.2019. Isolation and promoting growth properties of endophytic bacteria producing ACC deaminase of Panax ginseng[J]. Journal of Jilin Agricultural University, 41(2): 168-174.) [8] 李浩然, 林伟, 王天一, 等. 2024. 人参化感作用研究进展[J/OL]. 分子植物育种, 1(9): 10. (2024-07-17). http://kns.cnki.net/kcms/detail/46.1068.S.20240715.1254.002.html. [9] 李娟, 王文丽, 赵旭. 2020. 生物肥料对当归生长及土壤酶活性、微生物多样性的影响[J]. 广东农业科学, 47(6): 39-46. (Li J, Wang W L, Zhao X.2020. Effects of biological fertilizers on Angelica sinensis growth and soil enzyme activity and microbial diversity[J]. Guangdong Agricultural Sciences, 47(6): 39-46.) [10] 李茜, 傅培龙, 贾颜, 等. 2021. 含ACC脱氨酶的螃蟹脚内生细菌筛选及其acdS基因克隆与分析[J/OL]. 分子植物育种, 1(17): 4. (2021-12-27). http://kns.cnki.net/kcms/detail/46.1068.S.20211227.1337.010.html. [11] 李振东, 陈秀蓉, 李鹏, 等. 2010. 珠芽蓼内生菌Z5产IAA和抑菌能力测定及其鉴定[J]. 草业学报, 19(2): 61-68. (Li Z D, Chen X R, Li P, et al.2010. Identification of Polygonum viviparum endophytic bacteria Z5 and determination of the capacity to secrete IAA and antagonistic capacity towards pathogenic fungi[J]. Acta Prataculturae Sinica, 19(2): 61-18.) [12] 刘朝波, 钱刚, 李林. 2021. 内生菌与药用植物活性成分生产的研究进展[J]. 遵义医科大学学报, 44(6): 801-806. (Liu C B, Qian G, Li L.2021. A review of endophytes and their role in producing active ingredients of medicinal plants[J]. Journal of Zunyi Medical University, 44(6): 801-806.) [13] 刘丽. 2023. 前胡内生菌研究及其对品质的影响[D]. 硕士毕业论文, 安徽中医药大学, 导师: 韩邦兴, pp. 44-51. (Liu L.2023. Study on endophytes of Peucedanum praeruptorum Dunn and its effect on quality[D]. Thesis for Ph.D., Anhui University of Chinese Medicine, Supervisor: Han B X, pp. 44-51.) [14] 刘雪. 2022. 石斛内生菌的研究进展[J]. 食品安全导刊, 5(14): 166-168. (Liu X.2022. Research progress of endophytic bacteria in Dendrobium[J]. China Food Safety Magazine, 5(14): 166-168.) [15] 马媛, 谢丹, 王照华, 等. 2015. 短刺小克银汉霉对甘草次酸的微生物转化[J]. 中国中药杂志, 40(21): 4212-4217. (Ma Y, Xie D, Wang Z H, et al.2015. Microbial transformation of glycyrrhetinic acid by Cunninghamella blakesleeana[J]. China Journal of Chinese Materia Medica, 40(21): 4212-4217.) [16] 牛舒琪. 2022. 内生菌OsiLf-2提高宿主抗逆性及MtRt-6促进宿主氮素利用的研究[D]. 博士毕业论文, 湖南大学, 导师: 朱咏华, pp. 67-79. (Niu S Q.2022. Study of endophyte OsiLf-2 improving stress resistance of host and MtRt-6 promoting nitrogen utilization of host[D]. Thesis for M.S., Hunan University, Supervisor: Zhu Y H, pp. 67-69.) [17] 普凤雅, 谷书杰, 何永宏, 等. 2022. 溶磷内生菌的筛选鉴定及其对薏苡生长发育的影响[J]. 福建农业学报, 37(7): 946-953. (Pu F Y, Gu S J, He Y H, et al.2022. Identification and characterization of phosphate-solubilizing endophytes in Coix lacrymajobi L.[J]. Fujian Journal of Agricultural Sciences, 37(7): 946-953.) [18] 王蕾臻. 2020. 基于基因组和代谢组学研究内生真菌调控三叶青根系生长的机理[D]. 硕士毕业论文, 杭州师范大学, 导师: 向太和, pp. 40-51. (Wang L Z.2020. Study on the mechanism of endophytic fungus from rootregulating the growth of Tetrastigma hemsleyanum based ongenomics and metabonomics[D]. Thesis for Ph.D., Hangzhou Normal University, Supervisor: Xiang T H, pp. 40-51.) [19] 王林林, 腊贵晓, 苏秀红, 等. 2024. 基于基因组信息挖掘的内生细菌Kocuria rosea促进地黄生长的机制研究[J]. 中国中药杂志, 49(22): 6119-6128. (Wang L L, La G X, Su X H, et al.Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea[J]. China Journal of Chinese Materia Medica, 49(22): 6119-6128.) [20] 位小丫, 林煜, 陈婷, 等. 2018. 田间条件下植物促生细菌缓解太子参连作障碍的效果评价[J]. 生态学杂志, 37(2): 399-408. (Wei X Y, Lin Y, Chen T, et al.Effects of plant growth-promoting rhizobacteria on alleviating consecutive monoculture problem of Pseudostellaria heterophylla under field conditions[J]. Chinese Journal of Ecology, 37(2): 399-408.) [21] 徐香茹, 董郁, 付为国. 2024. 酚酸类化感物质对根际土壤养分供应能力的影响[J]. 生态与农村环境学报, 40(10): 1358-1365. (Xu X R, Dong Y, Fu W G.2024. Effect of phenolic acid allelochemicals on nutrient supply capacity of rhizosphere soil[J]. Journal of Ecology and Rural Environment, 40(10): 1358-1365.) [22] 杨波, 陈晏, 李霞, 等. 2013. 植物内生菌促进宿主氮吸收与代谢研究进展[J]. 生态学报, 33(9): 2656-2664. (Yang B, Chen Y, Li X, et al.2013. Research progress on endophyte-promoted plant nitrogen assimilation and metabolism[J]. Acta Ecologica Sinica, 33(9): 2656-2664.) [23] 杨立军, 李少刚, 曹倩, 等. 2024. 植物内生菌促生机制及应用研究进展[J]. 江苏农业科学, 52(9): 35-41. (Yang L J, Li S G, Cao Q, et al.2024. Research progress on growth promoting mechanism and application of plant endogenous bacteria[J]. Jiangsu Agricultural Sciences, 52(9): 35-41.) [24] 尹雁玲, 蔡然, 张功良, 等. 2023. 植物内生菌增强植物对生物胁迫抗性的研究进展[J]. 广西植物, 43(2): 212-220. (Yin Y L, Cai R, Zhang G L, et al.2023. Research progress on the function of plant endophytes in enhancing plant resistance to biological stresses[J]. Guihaia, 43(2): 212-220.) [25] 尹琢. 2023. 具拮抗促生能力人参内生菌的筛选及其对人参不定根的影响[D]. 硕士毕业论文, 吉林农业大学, 导师: 王义, pp. 10-19. (Yin Z.2023. Screening of ginseng endophytes with antagonistic growth promoting ability and their effects on adventitious roots of ginseng[D]. Thesis for Ph.D., Jilin Agricultural University, Supervisor: Wang Y, pp. 10-19.) [26] 张昊, 刘苗苗, 刘晓娜, 等. 2022. 内生菌影响药用植物产生药理活性化合物的研究进展[J]. 生物技术通报, 38(8): 41-51. (Zhang H, Liu M M, Liu X N, et al.2022. Impact of endophytic microorganisms on the pharmaco-active compounds production in medicinal plants: A review[J]. Biotechnology Bulletin, 38(8): 41-51.) [27] 张钧虹, 玛依拉·吐尔地别克, 李晓亮, 等. 2024. 乌头内生菌及其代谢物在农业领域的研究进展[J]. 工业微生物, 54(2): 74-78. (Zhang J H, Mayila T, Li X L, et al.2024. Research progress of Aconitum endophytes and their metabolites in the agricultural[J]. Industrial Microbiology, 54(2): 74-78.) [28] Ahlich S K.1997. Vorkommen und charakterisierung von dunklen, septierten hyphomyceten (DSH) in gehölzwurzeln[D]. Thesis for M.S., ETH Zürich, Supervisor: Sieber T N, pp. 146-154. [29] Anandan K, Vittal R R.2019. Quorum quenching activity of AiiA lactonase KMMI17 from endophytic Bacillus thuringiensis KMCL07 on AHL- mediated pathogenic phenotype in Pseudomonas aeruginosa[J]. Microbial Pathogenesis, 132(7): 230-242. [30] Caruso M, Colombo A L, Fedeli L L, et al.2000. Isolation of endophytic fungi and actinomycetes taxane producers[J]. Annals of Microbiology, 50(1): 3-13. [31] Chowdappa S, Jagannath S, Konappa N, et al.2020. Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium[J]. Biomolecules, 10(10): 1412. [32] Chu C, Wang Y, Wang E.2021. Improving the utilization efficiency of nitrogen, phosphorus and potassium: Current situation and future perspectives[J]. Scientia Sinica Vitae, 51(10): 1415-1423. [33] Dai C C.2010. The contents of phenolic acids in continuous cropping peanut and their allelopathy[J]. Acta Ecologica Sinica, 30(8): 2128-2134. [34] Dai C C, Tian L S, Zhao Y T, et al.2010. Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa[J]. Biodegradation, 21(2): 245-255. [35] Deng Z S, Kong Z Y, Zhang B C, et al.2020. Insights into non-symbiotic plant growth promotion bacteria associated with nodules of Sphaerophysa salsula growing in northwestern China[J]. Archives of Microbiology, 202(2): 399-409. [36] Liao C F, Doilom M, Jeewon R, et al.2025. Challenges and update on fungal endophytes: Classification, definition, diversity, ecology, evolution and functions[J]. Fungal Diversity, https://doi.org/10.1007/s13225-025-00550-5. [37] Li H, Li C, Song X, et al.2022. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation[J]. Scientific Reports, 12(1): 2758. [38] Liu Y, Wu D, Kan Y, et al.2024. Response of soil microorganisms and phenolic to Pseudostelariae heterophylla cultivation in different soil types[J]. Eurasian Soil Science, 57(3): 446-459. [39] Kusari S, Zuhlke S, Spiteller M.2011. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis[J]. Journal of Natural Products, 74(4): 764-775. [40] Madhiana M, Pradana A P, Adiwenam, et al.2017. Use of endophytic bacteria from roots of Cyperus rotundus for biocontrol of Meloidogyne incognita[J]. Biodiversitas Journal of Biological Diversity, 18(4) : 1308-1315. [41] Nisa H, Kamili A N, Nawchoo I A, et al.2015. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review[J]. Microbial Pathogenesis, 82(9): 50-59. [42] Saravanakumar D, Kavino M, Raguchander T, et al.2011. Plant growth promoting bacteria enhance water stress resistance in green gram plants[J]. Acta Physiologiae Plantarum, 33(1): 203-209. [43] Tang J, Li Y, Zhang L, et al.2023. Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms[J]. Microorganisms, 11(8): 2077. [44] Tian L, Jiang Y, Chen C, et al.2014. Screening and identification of an endophytic bacterium with 1-aminocyclopropane-1-carboxylate deaminase activity from Panax ginseng and its effect on host growth[J]. Acta Microbiologica Sinica, 54(7): 760-769. [45] Wang S, Chen A, Xie K, et al.2020. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences of the USA, 117(28): 16649-16659. [46] Wani Z A, Ashraf N, Mohiuddin T, et al.2015. Plant-endophyte symbiosis, an ecological perspective[J]. Applied Microbiology and Biotechnology, 99(7): 2955-2965. [47] Wu W, Chen W, Liu S, et al.2021. Beneficial relationships between endophytic bacteria and medicinal plants[J]. Frontiers in Plant Science, 22(12): 646146. [48] Xie Z, Chu Y K, Zhang W, et al.2019. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environmental and Experimental Botany, 158(2): 99-106. [49] Xu W, Jin X, Yang M, et al.2021. Primary and secondary metabolites produced in Salvia miltiorrhiza hairy roots by an endophytic fungal elicitor from Mucor fragilis[J]. Plant Physiology and Biochemistry, 160(1): 404-412. [50] Xu Z W, Tian J, Gan L, et al.2020. Discovery of the endophytic fungi from Polygonum cuspidatum and biotransformation of resveratrol to pterostillbene by the endophyte Penicillium sp. F5[J]. Applied Biochemistry and Microbiology, 56(5): 313-320. [51] Yadav G, Meena M.2021. Bioprospecting of endophytes in medicinal plants of thar desert: An attractive resource for biopharmaceuticals[J]. Biotechnology Reports (Amsterdam, Netherlands), 30(24): e00629. [52] Yu F, He Z, Xin X, et al.2024. Evidence that beneficial microbial inoculation enhances heavy metal-contaminated soil remediation: Variations in plant endophyte communities[J]. Journal of Hazardous Materials, 480(12): 135883. [53] Yuan J, Zhang W, Sun K, et al.2019. Comparative transcriptomics and proteomics of Atractylodes lancea in response to endophytic fungus Gilmaniella sp. AL12 reveals regulation in plant metabolism[J]. Frontiers in Microbiology, 28(10): 1208. [54] Zeng J, Xu T, Cao L, et al.2018. The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae[J]. Microbial Ecology, 76(4): 1021-1029. [55] Zhang T L.2010. The effects of intercropping with medicinal plants and addition of endophytic fungi on soil microflora and peanut yield[J]. Acta Ecologica Sinica, 30(8): 2105-2111. [56] Zhou J Y, Li X, Zheng J Y, et al.2016. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea[J]. Plant Physiology and Biochemistry, 101(1): 132-140. |
|
|
|