|
|
Research Progress on Tobacco (Nicotiana tabacum) Endophytes and Endophyte-based Preparations |
ZHAO Qiao-Yue, LI Xin-Yan, CHEN Hao-Ran, GE Wei-Yi, ZHAO Ming-Qin* |
College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China |
|
|
Abstract As a special microbial community that forms a stable symbiotic relationship with the host, tobacco (Nicotiana tabacum) endophytes are valuable in biocontrol, bioprophylaxis and host ecological adaptation regulation. This review summarized the species diversity of tobacco endophytes and their functional research progress, and found that Bacillus, Fusarium and Streptomyces, as the dominant flora, could promote tobacco growth and development through biological nitrogen fixation, organic phosphorus solubilisation, phytohormone synthesis and systemic resistance induction. In addition, this paper also discussed the analysis of the functional genes of tobacco endophytes and the challenges they faced in the process of production and application, and provides a theoretical basis for the selection and breeding of speciality high-quality tobacco in China.
|
Received: 18 August 2024
|
|
Corresponding Authors:
* zhaomingqin@126.com
|
|
|
|
[1] 蔡刘体, 谢红炼, 刘文锋, 等. 2022. 烟草种子附生细菌群落结构与多样性分析[J]. 烟草科技, 55(11): 14-22. (Cai L T, Xie H L, Liu W F, et al.2022. Community structure and diversity analyses of adnascent bacteria on tobacco seeds[J]. Tobacco Science & Technology, 55(11): 14-22.) [2] 查兴平, 李永杰, 汪健康, 等. 2022. 一株内生砖红镰刀菌促进烟草生长和增强青枯病抗性[J]. 菌物学报, 41(10): 1658-1671. (Zha X P, Li Y J, Wang J K, et al.2022. A strain of endophytic Fusarium lateritium promotes growth and resistance to bacterial wilt of tobacco[J]. Mycosystema, 41(10): 1658-1671.) [3] 车红兵, 蔡永占, 何鹏飞, 等. 2021. 宁南霉素对烟草叶片内生细菌多样性的影响[J]. 江西农业学报, 33(10): 22-28. (Che H B, Cai Y Z, He P F, et al.2021. Effects of ningnanmycin on endophytic bacterial diversity of tobacco leaves[J]. Acta Agriculturae Jiangxi, 33(10): 22-28.) [4] 车永梅, 刘广超, 郭艳苹, 等. 2023. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 39(11): 217-225. (Che Y M, Liu G C, Guo Y P, et al.2023. Preparation of compound halotolerant bioinoculant and study on its growth-promoting effect[J]. Biotechnology Bulletin, 39(11): 217-225.) [5] 范成平, 白茂军, 田玉琴, 等. 2023. 烟草青枯病不同发病阶段根际土壤酚酸物质与微生物的关系分析[J]. 江西农业学报, 35(04): 85-91. (Fan C P, Bai M J, Tian Y Q, et al.2023. Relationship between phenolic acid substances and microorganisms in rhizosphere soil at different pathogenesis stages of tobacco wilt[J]. Acta Agriculturae Jiangxi, 35(04): 85-91.) [6] 高嘉宁, 张丹, 杨军伟. 2024. 中川208烟草内生细菌微生物群落结构及其多样性[J]. 中国烟草学报, 30(01): 63-71. (Gao J N, Zhang D, Yang J W.2024. Community structure and diversity of endophytic bacteria in tobacco variety Zhongchuan 208[J]. Acta Tabacaria Sinica, 30(01): 63-71.) [7] 郭凡, 王戈, 陶怡帆, 等. 2023. 多雨烟区烤烟种植密度对烟株发病率及土壤微生物多样性的影响[J]. 华北农学报, 38(S1): 354-361. (Guo F, Wang G, Tao Y F, et al.2023. Effects of planting density of flue-cured tobacco on disease and soil microbial diversity in the rainy regions[J]. Acta Agriculturae Boreali-Sinica, 38(S1): 354-361.) [8] 何晓冰, 黄昆鹏, 李俊营, 等. 2024. 不同烤烟品种根际微生物多样性群落结构分析[J]. 贵州农业科学, 52(04): 56-65. (He X B, Huang K P, Li J Y, et al.2024. Analysis on rhizosphere microbial diversity and community structure of different flue-cured tobacco varieties[J]. Guizhou Agricultural Sciences, 52(04): 56-65.) [9] 霍雪雪. 2023. TvHSP70在绿色木霉应答高温和干旱胁迫中的功能解析[D]. 硕士学位论文, 齐鲁工业大学, 导师: 郭凯, pp. 15-36. (Huo X X.2023. Functional analysis of TvHSP70 in Trichoderma viride response to high temperature and drought stress[D]. Thesis for M. S., Qilu University of Technolog, Supervisor: Guo K, pp. 15-36.) [10] 焦蓉, 刘剑金, 杨焕文, 等. 2018. 抑制烟草黑胫病菌和促烟草幼苗生长内生菌的分离与鉴定[J]. 云南农业大学学报(自然科学), 33(6): 1037-1045. (Jiao R, Liu J J, Yang H W, et al.2018. Isolation and identification of endophytic bacteria inhibiting Phytophthora parasitica var. nicotianae and promoting tobacco seedling growth[J]. Journal of Yunnan Agricultural University (Natural Science), 33(6): 1037-1045.) [11] 金慧清, 程昌合, 徐清泉, 等. 2017. 烟草内生真菌对烟草生长和烟叶重金属含量的影响[J]. 菌物学报, 36(2): 186-192. (Jin H Q, Cheng C H, Xu Q Q, et al.2017. Effects of endophytic fungi on tobacco growth and heavy metal content in leaves[J]. Mycosystema, 36(2): 186-192.) [12] 康慧颖, 王伟, 刘佳莉, 等. 2015. 两株具促生作用的苜蓿内生菌的分离纯化与鉴定[J]. 微生物学通报, 42(2): 280-288. (Kang H Y, Wang W, Liu J L, et al.2015. Isolation and identification of two plant-growth promoting endophytes from alfalfa[J]. Microbiology China, 42(2): 280-288.) [13] 李涵, 康业斌, 徐敏, 等. 2024. 洛阳地区烟株内生放线菌的分离鉴定及其生物学功能测定[J]. 江苏农业科学, 52(13): 126-131. (Li H, Kang Y B, Xu M, et al.2024. Isolation and identification of endophytic actinomycetes from tobacco plants in Luoyang area and determination of their biological functions[J]. Jiangsu Agricultural Sciences, 52(13): 126-131.) [14] 李琳, 陈航, 陈有忠, 等. 2024. 撑绿杂交竹基腐病生防菌的促生机制[J]. 林业科学, 60(11): 93-106. (Li L, Chen H, Chen Y Z, et al.2024. Growth-promoting mechanism of biocontrol bacteria against Bambusa pervariabilis × Dendrocalamopsis grandis basal rot[J]. Scientia Silvae Sinicae, 60(11): 93-106.) [15] 李盼盼, 袁晓龙, 李金海, 等. 2018. 湖北烟草内生真菌生物多样性和种群结构分析[J]. 微生物学报, 58(10): 1853-1863. (Li P P, Yuan X L, Li J H, et al.2018. Biodiversity and community structure of endophytic fungi isolated from Nicotiana tabacum L.[J]. 2018. Acta Microbiologica Sinica, 58(10): 1853-1863.) [16] 李文君, 钱正强, 金蕊, 等. 2013. 云南大理烟区烟叶内生真菌多样性及分布特征[J]. 微生物学通报, 40(05): 783-791. (Li W J, Qian Z Q, Jin R, et al.2013. Diversity and distribution characteristics of endophytic fungi in Nicotiana tabacum in Dali district, Yunnan Province[J]. Microbiology China, 40(05): 783-791.) [17] 李想, 刘艳霞, 夏范讲, 等. 2017. 烟草根际促生菌(PGPR)的筛选、鉴定及促生机理研究[J]. 中国烟草学报, 23(3): 111-118. (Li X, Liu Y X, Xia F J, et al.2017. Screening, identification and plant growth-promotion mechanism of tobacco plants rhizobacteria[J]. Acta Tabacaria Sinica, 23(3): 111-118.) [18] 李颖颖, 康业斌, 李成军, 等. 2023. 3种拮抗烟草疫霉及产IAA内生细菌的分离鉴定[J]. 江苏农业科学, 51(18): 107-114. (Li Y Y, Kang Y B, Li C J, et al.2023. Isolation and identification of three antagonizing phytophthora nicotianae and IAA-producing endophytic bacteria[J]. Jiangsu Agricultural Sciences, 51(18): 107-114.) [19] 林智慧, 邓新发, 王雪仁, 等. 2021. 一株高效烟碱降解内生菌的分离及降解特征研究[J]. 中国烟草科学, 42(1): 79-85. (Lin Z H, Deng X F, Wang X R, et al.2021. Isolation and degradation characteristics of an entophytic nicotine-degrading bacterial strain in tobacco[J]. Chinese Tobacco Science, 42(1): 79-85.) [20] 刘江苇. 2020. 内生放线菌OsiSh-2对三种植物幼苗生长的影响[D]. 硕士学位论文, 湖南大学, 导师: 刘选明, pp. 18-24. (Liu J W.2020. Effects of endophytic actinomycetes OsiSh-2 on the growth of three plant seedlings[D]. Thesis for M. S., Hunan University, Supervisor: Liu X M, pp. 18-24.) [21] 刘艳霞, 李想, 李寒, 等. 2024. 青枯病导病型和抑病型植烟土壤氮循环微生物群落差异分析[J]. 贵州农业科学, 52(11): 52-63. (Liu Y X, Li X, Li H, et al.2024. Analysis on differences in microbial community related to nitrogen cycling in tobacco disease-conducive and suppressive soils against tobacco bacterial wilt[J]. Guizhou Agricultural Sciences, 52(11): 52-63.) [22] 马勤, 雷瑞峰, 迪力热巴•阿不都肉苏力, 等. 2021. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 37(03): 153-161. (Ma Q, Lei R F, Dilireba A, et al.2021. Research progress on the symbiotic metabolic of endophytes and plants under stress[J]. Biotechnology Bulletin, 37(03): 153-161.) [23] 牛文研, 李小杰, 宋守晔, 等. 2024. 两株根际促生细菌的筛选鉴定及其对烟草的促生作用[J]. 中国烟草科学, 45(06): 46-54. (Niu W Y, Li X J, Song S Y, et al.2024. Screening and identification of two plant growth-promoting rhizobacteria and the effects of growth promoting on tobacco[J]. Chinese Tobacco Science, 45(06): 46-54.) [24] 裴洲洋, 张猛. 2009. 烟草内生真菌分布特征研究[J]. 河南农业科学,(06): 97-99+104. (Pei Z Y, Zhang M.2009. Distribution characteristics of endophytic fungi in tobacco[J]. Journal of Henan Agricultural Sciences,(06): 97-99+104.) [25] 邱睿, 李小杰, 白静科, 等. 2023. 烟草镰刀菌根腐病生防假单胞菌的筛选与鉴定[J]. 中国烟草学报, 29(3): 84-93. (Qiu R, Li X J, Bai J K, et al.2023. Screening and identification of Pseudomonas against Fusarium root rot of tobacco[J]. Acta Tabacaria Sinica, 29(3): 84-93.) [26] 苏丹, 林智慧, 王雪仁, 等. 2021. 1株高效降烟碱烟草内生菌的筛选、鉴定及其代谢途径研究[J]. 沈阳农业大学学报, 52(3): 279-286. (Su D, Lin Z H, Wang X R, et al.2021. Screening and identification of a highly efficient nicotine-degrading endophyte in tobacco and its metabolic pathways[J]. Journal of Shenyang Agricultural University, 52(3): 279-286.) [27] 苏家恩, 杨志娟, 董天学, 等. 2024. 阿南德氏链霉菌FXJ-25的鉴定及对烟草靶斑病的防效[J]. 中国烟草科学, 45(02): 56-63. (Su J E, Yang Z J, Dong T X, et al.2024. Identification of Streptomyces anandii FXJ-25 and its control efficacy against tobacco target spot pathogen[J]. Chinese Tobacco Science, 45(02): 56-63.) [28] 孙美丽, 史彩华, 肖本青, 等. 2023. 烟草靶斑病叶际微生物群落结构与多样性分析[J]. 烟草科技, 56(04): 1-9. (Sun M L, Shi C H, Xiao B Q, et al.2023. Composition and diversity of phyllospheric microbial community in tobacco leaves infected by tobacco target spot disease[J]. Tobacco Science & Technology, 56(04): 1-9.) [29] 孙文秀, 邵晨阳, 陈妍妍, 等. 2024. 干旱胁迫下2种内生真菌对烟草生理生化指标及NAC基因表达的影响[J]. 华北农学报, 39(01): 113-119. (Sun W X, Shao C Y, Chen Y Y, et al.2024. Effects of two endophytic fungi on physiological and biochemical indexes and NAC gene expression in tobacco under drought stress[J]. Acta Agriculturae Boreali-Sinica, 39(01): 113-119.) [30] 王光路, 卢玉松, 刘兰茜, 等. 2023. 耐高温亚硝酸盐降解菌的分离、鉴定及降低雪茄烟叶亚硝胺的应用[J]. 微生物学通报, 50(09): 3970-3982. (Wang G L, Lu Y S, Liu L X, et al.2023. Heat-tolerant nitrite-degrading bacterial strains: Isolation, identification, and applications in reducing nitrosamines in cigar tobacco leaves[J]. Microbiology China, 50(09): 3970-3982.) [31] 韦玉倩, 马桂妹, 刘剑金, 等. 2023. 拮抗烟草疫霉菌的趋化性内生细菌筛选及其对烟草黑胫病的防效[J]. 云南大学学报(自然科学版), 45(02): 531-537. (Wei Y Q, Ma G M, Liu J J, et al.2023. Screening of chemotactic endophytic bacteria against Phytophthora nicotianae and their control effects towards tobacco black shank[J]. Journal of Yunnan University (Natural Sciences Edition), 45(02): 531-537.) [32] 吴翔, 谭昊, 彭卫红. 2021. 抑制烟草青枯病的3株放线菌筛选及鉴定[J]. 农业生物技术学报, 29(02): 352-363. (Wu X, Tan H, Peng W H.2021. Screening and identification of 3 actinobacterial strains against tobacco bacterial wilt[J]. Journal of Agricultural Biotechnology, 29(02): 352-363.) [33] 谢红炼, 汪汉成, 蔡刘体, 等. 2020. 烟草种子内生细菌群落结构与多样性[J]. 微生物学报, 60(03): 601-616. (Xie H L, Wang H C, Cai L T, et al.2020. Community structure and diversity of endophytic bacteria of tobacco seeds[J]. Acta Microbiologica Sinica, 60(03): 601-616.) [34] 谢红炼, 汪汉成, 史彩华, 等. 2021. 烟草种子内生真菌群落结构和多样性分析[J]. 中国烟草科学, 42(02): 28-36. (Xie H L, Wang H C, Shi C H, et al.2021. Community structure and diversity of endophytic fungi in tobacco seeds[J]. Chinese Tobacco Science, 42(02): 28-36.) [35] 徐佰鸽. 2012. 野生稻内生真菌对水稻和烟草幼苗的促生作用研究[D]. 硕士学位论文, 浙江大学, 导师: 章初龙, pp. 31-40. (Xu B G.2012. Studies on growth-promoting effect of endophytic fungi of wild rice on rice and tobacco seedings[D]. Thesis for M. S., Zhejiang University, Supervisor: Zhang C L, pp. 31-40.) [36] 闫寒, 李虎林, 郎彬, 等. 2019. 吉烟9号内生细菌的分离及多样性分析[J]. 中国烟草科学, 40(01): 75-81. (Yan H, Li H L, Lang B, et al.2019. Isolation and diversity analysis of endophytic bacteria in Jiyan 9[J]. Chinese Tobacco Science, 40(01): 75-81.) [37] 杨培香, 李青青, 焦俊, 等. 2015. 枯草芽孢杆菌Van3菌株提高烟丝品质的研究[J]. 云南农业大学学报(自然科学), 30(1): 50-57. (Yang P X, Li Q Q, Jiao J, et al.2015. Enhancement of flue-cured tobacco quality with Van3 strain of Bacillus subtilis[J]. Journal of Yunnan Agricultural University (Natural Science), 30(1): 50-57.) [38] 杨相, 杨倩, 龙星黔, 等. 2025. 烟草棒孢霉叶斑病拮抗菌TKY-11的生防潜力评价[J]. 中国烟草学报, 31(01): 135-141. (Yang X, Yang Q, Long X Q, et al.2025. Evaluation of the biocontrol potential of antagonistic strain TKY-11 against Corynespora cassiicola[J]. Acta Tabacaria Sinica, 31(01): 135-141.) [39] 叶建斌, 王璐, 杨峰, 等. 2019. 类芽孢杆菌发酵原料浸提液提升再造烟叶品质[J]. 中国烟草学报, 25(1): 33-38. (Ye J B, Wang L, Yang F, et al.2019. Improving of reconstituted tobacco via fermenting extract of its raw material with Paenibacillus sp.[J]. Acta Tabacaria Sinica, 25(1): 33-38.) [40] 叶长文, 董欣雨, 崔中月, 等. 2024. 抑制雪茄烟叶TSNAs生成的弯曲芽胞杆菌Ni3菌株的分离筛选及其关键基因挖掘[J]. 烟草科技, 57(08): 32-41. (Ye C W, Dong X Y, Cui Z Y, et al.2024. Isolation, screening and key gene discovery of a Bacillus flexus strain Ni3 to inhibit formation of TSNAs in cigar tobacco[J]. Tobacco Science & Technology, 57(08): 32-41.) [41] 张春花, 单治国, 蒋智林, 等. 2018. 4种微生物对烟叶中甲霜灵残留动态的影响[J]. 江苏农业科学, 46(14): 168-173. (Zhang C H, Shan Z G, Jiang Z L, et al.2018. Impact of four microorganisms on dynamics of metalaxyl residue in tobacco leaves[J]. Jiangsu Agricultural Sciences, 46(14): 168-173.) [42] 张涵, 吴文信, 陈夏晔, 等. 2024. 不同生态区烟草可培养内生细菌多样性及黑胫病拮抗菌筛选[J]. 中国烟草科学, 45(06): 73-80. (Zhang H, Wu W X, Chen X Y, et al.2024. Diversity of culturable endophytic bacteria in tobacco from different ecological regions and screening of biocontrol bacteria against tobacco black shank disease[J]. Chinese Tobacco Science, 45(06): 73-80.) [43] 张洁梅, 张仁军, 姚正平, 等. 2020. 烟草青枯病生防菌的筛选及其田间防效评价[J]. 中国农学通报, 36(28): 131-136. (Zhang J M, Zhang R J, Yao Z P, et al.2020. Screening of biocontrol bacteria against tobacco bacterial wilt and evaluation of the field control effect[J]. Chinese Agricultural Science Bulletin, 36(28): 131-136.) [44] 章舸, 彭玉龙, 芶剑渝, 等. 2023. 烟草疫霉拮抗放线菌的生防潜力评价[J]. 中国生物防治学报, 39(3): 667-675. (Zhang G, Peng Y L, Gou J Y, et al.2023. Evaluation of biocontrol potential of the antagonistic actinomycetes against Phytophthora parasitica var. nicotianae[J]. Chinese Journal of Biological Control, 39(3): 667-675.) [45] 郑洒洒, 李强, 魏硕, 等. 2024. 分散泛菌(Pantoea dispersa) S8797对烟草防病促生多功能分析[J]. 中国土壤与肥料, (11): 205-213.(Zheng S S, Li Q, Wei S, et al. 2024. Multifunctional analysis of biological control and plant growth-promoting capacity of Pantoea dispersa S8797 on tobacco[J]. Soils and Fertilizer Sciences in China, (11): 205-213.) [46] 钟钏, 高峻, 凌爱芬, 等. 2021. 烟草根际促生菌的分离鉴定及抗菌、促生特性[J]. 四川农业科技, (11): 58-62. (Zhong C, Gao J, Ling A F, et al. 2021. Isolation and identification of rhizosphere promoting bacteria of tobacco and their antibacterial and growth-promoting properties[J]. Sichuan Agricultural Science and Technology, (11): 58-62.) [47] 寇智瑞, 周鑫斌. 2020. 不同连作年限黄壤烟田土壤细菌群落的差异[J]. 植物营养与肥料学报, 26(03): 511-521. (Kou Z R, Zhou X B.2020. Variation of soil bacterial community in tobacco field after different years of continuous monocropping[J]. Journal of Plant Nutrition and Fertilizers, 26(03): 511-521.) [48] 朱天艺, 龚一富, 刘增美, 等. 2015. 转北美海蓬子胆碱单加氧酶基因(cmo)烟草的获得及耐盐性鉴定[J]. 农业生物技术学报, 23(10): 1310-1317. (Zhu T Y, Gong Y F, Liu Z M, et al.2015. Transformation of Salicornia bigelovii choline monooxygenase gene (cmo) into Nicotiana tabacum and salt resistance identification of transgenic plant[J]. Journal of Agricultural Biotechnology, 23(10): 1310-1317.) [49] Araújo F F, Henning A, Hungria M, et al.2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development[J]. World Journal of Microbiology Biotechnology, 21(8/9): 1639-1645. [50] Begum N, Akhtar K, Ahanger M A, et al.2021. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions[J]. Environmental Science and Pollution Research, 28(33): 45276-45295. [51] Ben Abdallah R A, Mokni-Tlili S, Nefzi A, et al.2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs[J]. Biological Control, 97: 80-88. [52] Cao Y, Yang Z X, Yang D M, et al.2022. Tobacco root microbial community composition significantly associated with root-knot nematode infections: Dynamic changes in microbiota and growth stage[J]. Frontiers in Microbiology, 13: 807057. [53] Chen X Y, Krug L, Yang M F, et al.2020. Conventional seed coating reduces prevalence of proteobacterial endophytes in Nicotiana tabacum[J]. Industrial Crops and Products, 155: 112782. [54] Compant S, Cambon M C, Vacher C, et al.2020. The plant endosphere world-bacterial life within plants[J]. Environmental Microbiology, 23(4): 1812-1829. [55] Dalakouras A, Katsaouni A, Avramidou M, et al.2023. A beneficial fungal root endophyte triggers systemic RNA silencing and DNA methylation of a host reporter gene[J]. RNA Biology, 20(1): 20-30. [56] Dastogeer K M G, Li H, Sivasithamparam K, et al.2017. A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings[J]. Archives of Microbiology, 199(10): 1357-1370. [57] Dastogeer K M G, Li H, Sivasithamparam K, et al.2018a. Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes[J]. Environmental and Experimental Botany, 149: 95-108. [58] Dastogeer K M G, Li H, Sivasithamparam K, et al.2018b. In vitro salt and thermal tolerance of fungal endophytes of Nicotiana spp. growing in arid regions of north-western Australia[J]. Archives of Phytopathology and Plant Protection, 51(11-12): 602-616. [59] Degola F, Fattorini L, Bona E, et al.2015. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents[J]. Plant Physiology and Biochemistry, 92: 11-18. [60] Fedoreyeva L I.2024. ROS as signaling molecules to initiate the process of plant acclimatization to abiotic stress[J]. International Journal of Molecular Sciences, 25(21): 11820-11820. [61] Gao Y F, Zhang X T, Wang L J, et al.2024. Contribution of Cd passivating functional bacterium H27 to tobacco growth under Cd stress[J]. Chemosphere, 362: 142552. [62] Ghorbel M, Brini F, Sharma A, et al.2021. Role of jasmonic acid in plants: the molecular point of view[J]. Plant Cell Reports, 40(8): 1-24. [63] Healy R A, Arnold A E, Bonito G, et al.2021. Endophytism and endolichenism in Pezizomycetes: The exception or the rule[J]. The New phytologist, 233(5): 1974-1983. [64] Hosseini F, Mosaddeghi M R, Dexter A R, et al.2018. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses[J]. Planta, 247(5): 1229-1245. [65] Huang J M, He Z J, Wang J K, et al.2023. A novel effector FlSp1 inhibits the colonization of endophytic Fusarium lateritium and increases the resistance to Ralstonia solanacearum in tobacco[J]. Journal of Fungi, 9(5): 519. [66] Jiang Y L, Chen X, Zhao G K, et al.2021. Endophytic fungal community of tobacco leaves and their potential role in the formation of “Cherry-Red” tobacco[J]. Frontiers in Microbiology, 21: 658116. [67] Jiao R, Ahmed A, He P F, et al.2023. Bacillus amyloliquefaciens induces resistance in tobacco against powdery mildew pathogen Erysiphe cichoracearum[J]. Journal of Plant Growth Regulation, 42(10): 6636-6651. [68] Jiao R, Munir S, He P F, et al.2020. Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion[J]. Biological Control, 143: 104160. [69] Khan A L, Hussain J, Al-Harrasi A, et al.2015. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance[J]. Critical Reviews in Biotechnology, 35(1): 62-74. [70] Kim J S, Lee J, Lee C H, et al.2015. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants[J]. The Plant Pathology Journal, 31(2): 195-201. [71] Liu T B, Gu Y B, Zhou Z C, et al.2021. Ecological strategies of biological and chemical control agents on wildfire disease of tobacco (Nicotiana tabacum L.)[J]. BMC Microbiology, 21(1): 184-184. [72] Ortega-Ortega Y, Sarmiento-Lopez L G, Baylon-Palomino A, et al.2024. Enterobacter sp. DBA51 produces ACC deaminase and promotes the growth of tomato (Solanum lycopersicum L.) and tobacco (Nicotiana tabacum L.) plants under greenhouse condition[J]. Current Research in Microbial Sciences, 6: 100207. [73] Peng C E, Zhang A L, Wang Q B, et al.2020. Ultrahigh-activity immune inducer from endophytic fungi induces tobacco resistance to virus by SA pathway and RNA silencing[J]. BMC Plant Biology, 20(1): 169. [74] Petkova M, Petrova S, Spasova-Apostolova V, et al.2022. Tobacco plant growth-promoting and antifungal activities of three endophytic yeast strains[J]. Plants, 11(6): 751. [75] Petrini O, Sieber T N, Toti L, et al.1993. Ecology, metabolite production, and substrate utilization in endophytic fungi[J]. Natural Toxins, 1(3): 185-196. [76] Plaza V, Silva-Moreno E, Castillo L.2019. Breakpoint: Cell wall and glycoproteins and their crucial role in the phytopathogenic fungi infection[J]. Current protein & peptide science, 21(3): 227-244. [77] Qiao L, Liu J, Zhou Z X, et al.2023. Positive effects of Cordyceps cateniannulata colonization in tobacco: Growth promotion and resistance to abiotic stress[J]. Frontiers in Microbiology, 14: 1131184. [78] Santos M P, Zandonadi D B, De Sá A F L, et al.2020. Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots[J]. Theoretical and Experimental Plant Physiology, 32(4): 1-13. [79] Shar A G, Zhang L Y, Lu A Z, et al.2025. Unlocking biochar’s potential: Innovative strategies for sustainable remediation of heavy metal stress in tobacco plants[J]. Scientifica, 20256302968. [80] Shen Y X, Zhao J Y, Zou X F, et al.2023. Differential responses of bacterial and fungal communities to siderophore supplementation in soil affected by tobacco bacterial wilt (Ralstonia solanacearum)[J]. Microorganisms, 11(6): 1583. [81] Shirokikh I G, Nasarova Y I, Raldugina G N, et al.2022. Analysis of actinobiota in the tobacco rhizosphere with a heterologous choline oxidase gene from Arthrobacter globiformis[J]. Biology Bulletin, 49(6): 713-720. [82] Shu W S, Huang L N.2021. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 20(4): 219-235. [83] Spaepen S, Vanderleyden J, Remans R.2007. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS microbiology reviews, 31(4): 425-48 [84] Su Z Z, Zeng Y L, Li X L, et al.2021. The endophytic fungus piriformospora indica-assisted alleviation of cadmium in tobacco[J]. Journal of Fungi, 7(8): 675. [85] Sun J, Dong Y, Meng Y M, et al.2025. Effect of transgene on salt tolerance of tobacco[J]. Transgenic Research, 34(1): 11-11. [86] Tang Q J, Liu T B, Teng K, et al.2023. Microbial interactions and metabolisms in response to bacterial wilt and black shank pathogens in the tobacco rhizosphere[J]. Frontiers in plant science, 141200136-1200136. [87] Tian Z Y, Wang X M, Li Y Y, et al.2024. Co-inoculation of soybean seedling with Trichoderma asperellum and Irpex laceratus promotes the absorption of nitrogen and phosphorus[J]. Current Microbiology, 81(3): 87. [88] Toppo P, Kagatay L L, Gurung A, et al.2023. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector[J]. 3 Biotech, 13(6): 191-191. [89] Wang Q, Zhang X Y, Xie Q Q, et al.2024. Exploring plant growth-promoting traits of endophytic fungi isolated from Ligusticum chuanxiong hort and their interaction in plant growth and development[J]. Journal of Fungi, 10(10): 713. [90] Wang W, Xu K W, Wang M, et al.2023. Phytotoxic and antimicrobial terrein derivatives and butenolides isolated from the endophytic fungus Aspergillus terreus HT5[J]. Journal of Agricultural and Food Chemistry, 71(51): 20713-20723. [91] Waqar S, Bhat A A, Khan A A.2024. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration[J]. Plant Physiology and Biochemistry, 206: 108174. [92] Waqas M, Khan A L, Shahzad R, et al.2015. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress[J]. Journal of Zhejiang University-Science B, 16(12): 1011-1018. [93] Wei J B, Song K, Zang Z P, et al.2024. Influence of specific tobacco endophytic Bacillus on tobacco leaf quality enhancement during fermentation[J]. Frontiers in Microbiology, 15: 1468492. [94] Yang B Y, Zhang C Q, Guan C W, et al.2024a. Analysis of the composition and function of rhizosphere microbial communities in plants with tobacco bacterial wilt disease and healthy plants[J]. Microbiology Spectrum, e0055924. [95] Yang J K, Tong Z J, Fang D H, et al.2017. Transcriptomic profile of tobacco in response to Phytophthora nicotianae infection[J]. Scientific Reports, 7(1): 401. [96] Yang L H, Guo Y, Yang H, et al.2024b. Taxonomic and functional assembly cues enrich the endophytic tobacco microbiota across epiphytic compartments[J]. mSphere, 9(1): e0060723. [97] Yuan X L, Cao M, Liu X M, et al.2018. Composition and genetic diversity of the Nicotiana tabacum microbiome in different topographic areas and growth periods[J]. International Journal of Molecular Sciences, 19(11): 3421. [98] Zeng X N, Zhang X, Peng B, et al.2023. Chitooligosaccharide enhanced the efficacy of Bacillus amyloliquefaciens CAS02 for the control of tobacco black shank[J]. Frontiers in Microbiology, 14: 1182924. [99] Zhang M Y, Li H, Miao P, et al.2024. Microbial community composition and their activity against Phytophthora nicotianae at different growth stages of tobacco[J]. Egyptian Journal of Biological Pest Control, 34(1): 63. [100] Zhang X X, Ma Y N, Wang X, et al.2022. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes[J]. Microbiome, 10(1): 216. |
|
|
|