|
|
Research Progress on the Regulation of Host MEK/ERK SignalingPathway by Viral Infection |
ZENG Jian-Yu1,2, GAO Peng1,2, ZHOU Lei1,2, GE Xin-Na1,2, ZHOU Qiong-Qiong1,2, HAN Jun1,2, GUO Xin1,2, ZHANG Yong-Ning1,2*, YANG Han-Chun1,2 |
1 National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; 2 Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China |
|
|
Abstract The mitogen-activated protein kinase kinase/extracellular regulated protein kinases (MEK/ERK) signaling pathway is a crucial intracellular signal transduction system that plays a pivotal role in regulating fundamental cellular processes including cell proliferation, differentiation, and apoptosis and so on. Recent studies have demonstrated that this signaling pathway also serves important regulatory functions in virus-host interactions. This paper comprehensively reviews the research progress on how viruses modulate biological processes such as apoptosis, autophagy, and the production and secretion of inflammatory factors through the MEK/ERK signaling pathway. Furthermore, it also provides an in-depth analysis of the current research status and potential therapeutic applications of MEK/ERK signaling pathway inhibitors as promising antiviral strategies. This review offers significant theoretical foundations and new research directions for the development of antiviral drugs.
|
Received: 19 December 2024
|
|
Corresponding Authors:
*zhangyongning@cau.edu.cn
|
|
|
|
[1] Andrade A A, Silva P N, Pereira A C, et al.2004. The vaccinia virus-stimulated mitogen-activated protein kinase(MAPK) pathway is required for virus multiplication[J]. Biochemical Journal, 381(2): 437-446. [2] Barbosa R, Acevedo L A, Marmorstein R.2021. The MEK/ ERK network as a therapeutic target in human cancer[J]. Molecular Cancer Research, 19(3): 361-374. [3] Booy E P, Henson E S, Gibson S B.2011. Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer[J]. Oncogene, 30(20): 2367-2378. [4] Chan M, Vijay S, McNevin J, et al.2021. Machine learning identifies molecular regulators and therapeutics for tar-geting SARS-CoV2-induced cytokine release[J]. Molec-ular Systems Biology, 17(9): e10426. [5] Chen J, Ye C, Wan C, et al.2021. The roles of c-Jun N-termi-nal kinase(JNK) in infectious diseases[J]. International Journal of Molecular Sciences, 22(17): 9640. [6] Choi C H, Jung Y K, Oh S H.2010. Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-acti-vated protein kinases and retards cell death by suppress-ing endoplasmic reticulum stress-mediated apoptosis[J]. Molecular Pharmacology, 78(1): 114-125. [7] Chu Z, Ma J, Wang C, et al.2018. Newcastle disease virus V pro-tein promotes viral replication in HeLa cells through the activation of MEK/ERK signaling[J]. Viruses, 10(9): 489. [8] Clybouw C, Mchichi B, Mouhamad S, et al.2005. EBV infec-tion of human B lymphocytes leads to down-regulation of Bim expression: Relationship to resistance to apopto-sis[J]. Journal of Immunology, 175(5): 2968-2973. [9] Cook S J, Stuart K, Gilley R, et al.2017. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase sig-nalling[J]. The FEBS Journal, 284(24): 4177-4195. [10] Davis R J.2000. Signal transduction by the JNK group of MAP kinases[J]. Cell, 103(2): 239-252. [11] Dijkers P F, Medema R H, Lammers J W, et al.2000. Expres-sion of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1[J]. Current Biology, 10(19): 1201-1204. [12] Dochi T, Akita A, Kishimoto N, et al.2018. Trametinib sup-presses HIV-1 replication by interfering with the disas-sembly of Human immunodeficiency virus type 1 capsid core[J]. Biochemical and Biophysical Research Commu-nications, 495(2): 1846-1850. [13] Domina A M, Vrana J A, Gregory M A, et al.2004. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol[J]. Oncogene, 23(31): 5301-5315. [14] Drosten M, Barbacid M.2020. Targeting the MAPK pathway in KRAS-driven tumors[J]. Cancer Cell, 37(4): 543-550. [15] Elgendy M, Sheridan C, Brumatti G, et al.2011. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival[J]. Molecular Cell, 42(1): 23-35. [16] Ewings K E, Hadfield -Moorhouse K, Wiggins C M, et al.2007. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL[J]. The EMBO Journal, 26(12): 2856-2867. [17] Fueller J, Becker M, Sienerth A R, et al.2008. C-RAF activa-tion promotes BAD poly-ubiquitylation and turn-over by the proteasome[J]. Biochemical and Biophysical Re-search Communications, 370(4): 552-556. [18] Gantke T, Sriskantharajah S, Ley S C.2011. Regulation and function of TPL-2, an IκB kinase-regulated MAP kinase kinase kinase[J]. Cell Research, 21(1): 131-145. [19] Giambartolomei S, Covone F, Levrero M, et al.2001. Sus-tained activation of the Raf/MEK/Erk pathway in re-sponse to EGF in stable cell lines expressing the Hepati-tis C virus (HCV) core protein[J]. Oncogene, 20(20): 2606-2610. [20] Goulielmaki M, Koustas E, Moysidou E, et al.2016. BRAF as-sociated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells[J]. Oncotarget, 7(8): 9188. [21] Groft S G, Nagy N, Boom W H, et al.2020. Toll-like receptor 2-Tpl2-dependent ERK signaling drives inverse interleu-kin 12 regulation in dendritic cells and macrophages[J]. Infection and Immunity, 89(1): e00323-20. [22] Hamza H, Shehata M M, Mostafa A, et al.2021. Improved in vitro efficacy of baloxavir marboxil against Influenza A vi-rus infection by combination treatment with the MEK in-hibitor ATR-002[J]. Frontiers in Microbiology, 12:611958. [23] Hauge C, Froödin M.2006. RSK and MSK in MAP kinase sig-nalling[J]. Journal of Cell Science, 119(15): 3021-3023. [24] Huang Y, Zhen Y, Chen Y, et al.2023. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to tar-geted therapy[J]. Biochemical Pharmacology, 217:115842. [25] Hu B, Chik K K H, Chan J F W, et al.2022. Vemurafenib inhib-its enterovirus A71 genome replication and virus assem-bly[J]. Pharmaceuticals, 15(9): 1067. [26] Huntington K E, Carlsen L, So E Y, et al.2022. Integrin/TGF-β1 inhibitor GLPG-0187 blocks SARS-CoV-2 delta and omicron pseudovirus infection of airway epithelial cells in vitro, which could attenuate disease severity[J]. Phar-maceuticals(Basel), 15(5): 618. [27] Kaniaris E, Vaporidi K, Vergadi E, et al.2014. Genetic and pharmacologic inhibition of Tpl2 kinase is protective in a mouse model of ventilator-induced lung injury[J]. In-tensive Care Medicine Experimental, 2: 1-16. [28] Kim H, Jang J H, Song Y E, et al.2020. Kaposi's sarcoma-as-sociated herpesvirus viral protein kinase phosphorylates extracellular signal-regulated kinase and activates MAPK/ERK signaling pathway[J]. Biochemical and Biophysical Research Communications, 521(4): 1083-1088. [29] Koch-Heier J, Schönsiegel A, Waidele L M, et al.2022. Phar-macokinetics, pharmacodynamics and antiviral efficacy of the MEK inhibitor zapnometinib in animal models and in humans[J]. Frontiers in Pharmacology, 13:893635. [30] Kumar R, Khandelwal N, Thachamvally R, et al.2018. Role of MAPK/MNK1 signaling in virus replication[J]. Virus Research, 253: 48-61. [31] Lan Y Y, Hsiao J R, Chang K C, et al.2012. Epstein-Barr virus latent membrane protein 2A promotes invasion of naso-pharyngeal carcinoma cells through ERK/Fra-1-mediat-ed induction of matrix metalloproteinase 9[J]. Journal of Virology, 86(12): 6656-6667. [32] Laure M, Hamza H, Koch-Heier J, et al.2020. Antiviral effi-cacy against Influenza virus and pharmacokinetic analy-sis of a novel MEK-inhibitor, ATR-002, in cell culture and in the mouse model[J]. Antiviral Research, 178:104806. [33] Leghmari K, Contreras X, Moureau C, et al.2008. HIV-1 Tat protein induces TNF-alpha and IL-10 production by hu-man macrophages: Differential implication of PKC-beta-II and -delta isozymes and MAP kinases ERK1/2 and p38[J]. Cellular Immunology, 254(1): 46-55. [34] Lemmon M A, Schlessinger J.2010. Cell signaling by recep-tor tyrosine kinases[J]. Cell, 141(7): 1117-1134. [35] Liu X Q, Cohen J I.2014. Inhibition of Bim enhances replica-tion of varicella-zoster virus and delays plaque forma-tion in virus-infected cells[J]. Journal of Virology, 88(2): 1381-1388. [36] Liu Y, Luo Z.2024. Repurposing anticancer drugs targeting the MAPK/ERK signaling pathway for the treatment of respiratory virus infections[J]. International Journal of Molecular Sciences, 25(13): 6946. [37] Hu B, Chik K K H, Chan J F W, et al.2022. Vemurafenib inhib-its enterovirus A71 genome replication and virus assem-bly[J]. Pharmaceuticals, 15(9): 1067. [38] Huntington K E, Carlsen L, So E Y, et al.2022. Integrin/TGF-β1 inhibitor GLPG-0187 blocks SARS-CoV-2 delta and omicron pseudovirus infection of airway epithelial cells in vitro, which could attenuate disease severity[J]. Phar-maceuticals(Basel), 15(5): 618. [39] Kaniaris E, Vaporidi K, Vergadi E, et al.2014. Genetic and pharmacologic inhibition of Tpl2 kinase is protective in a mouse model of ventilator-induced lung injury[J]. In-tensive Care Medicine Experimental, 2: 1-16. [40] Kim H, Jang J H, Song Y E, et al.2020. Kaposi's sarcoma-as-sociated herpesvirus viral protein kinase phosphorylates extracellular signal-regulated kinase and activates MAPK/ERK signaling pathway[J]. Biochemical and Biophysical Research Communications, 521(4): 1083-1088. [41] Koch-Heier J, Schönsiegel A, Waidele L M, et al.2022. Phar-macokinetics, pharmacodynamics and antiviral efficacy of the MEK inhibitor zapnometinib in animal models and in humans[J]. Frontiers in Pharmacology, 13:893635. [42] Kumar R, Khandelwal N, Thachamvally R, et al.2018. Role of MAPK/MNK1 signaling in virus replication[J]. Virus Research, 253: 48-61. [43] Lan Y Y, Hsiao J R, Chang K C, et al.2012. Epstein-Barr virus latent membrane protein 2A promotes invasion of naso-pharyngeal carcinoma cells through ERK/Fra-1-mediat-ed induction of matrix metalloproteinase 9[J]. Journal of Virology, 86(12): 6656-6667. [44] Laure M, Hamza H, Koch-Heier J, et al.2020. Antiviral effi-cacy against Influenza virus and pharmacokinetic analy-sis of a novel MEK-inhibitor, ATR-002, in cell culture and in the mouse model[J]. Antiviral Research, 178:104806. [45] Leghmari K, Contreras X, Moureau C, et al.2008. HIV-1 Tat protein induces TNF-alpha and IL-10 production by hu-man macrophages: Differential implication of PKC-beta-II and -delta isozymes and MAP kinases ERK1/2 and p38[J]. Cellular Immunology, 254(1): 46-55. [46] Lemmon M A, Schlessinger J.2010. Cell signaling by recep-tor tyrosine kinases[J]. Cell, 141(7): 1117-1134. [47] Liu X Q, Cohen J I.2014. Inhibition of Bim enhances replica-tion of varicella-zoster virus and delays plaque forma-tion in virus-infected cells[J]. Journal of Virology, 88(2): 1381-1388. [48] Liu Y, Luo Z.2024. Repurposing anticancer drugs targeting the MAPK/ERK signaling pathway for the treatment of respiratory virus infections[J]. International Journal of Molecular Sciences, 25(13): 6946. [49] Lucas R M, Luo L, Stow J L.2022. ERK1/2 in immune signal-ling[J]. Biochemical Society Transactions, 50(5): 1341-1352. [50] Luciano F, Jacquel A, Colosetti P, et al.2003. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degrada-tion via the proteasome pathway and regulates its pro-apoptotic function[J]. Oncogene, 22(43): 6785-6793. [51] Lv J, Jiang Y, Feng Q, et al.2020. Porcine circovirus type 2ORF5 protein induces autophagy to promote viral repli-cation via the PERK-eIF2α -ATF4 and mTOR-ERK1/2-AMPK signaling pathways in PK-15 cells[J]. Frontiers in Microbiology, 11: 320. [52] Lv L, Guan J, Zhen R, et al.2023. Orf virus induces complete autophagy to promote viral replication via inhibition of AKT/mTOR and activation of the ERK1/2/mTOR sig-nalling pathway in OFTu cells[J]. Veterinary Research,54(1): 22. [53] Macdonald A, Chan J K Y, Harris M.2005. Perturbation of epidermal growth factor receptor complex formation and Ras signalling in cells harbouring the Hepatitis C vi-rus subgenomic replicon[J]. Journal of General Virolo-gy, 86(4): 1027-1033. [54] Marts L T, Guidot D M, Sueblinvong V.2019. HIV-1 protein gp120 induces mouse lung fibroblast-to-myofibroblast transdifferentiation via CXCR4 activation[J]. The Amer-ican Journal of the Medical Sciences, 357(6): 483-491. [55] Mladinich M C, Conde J N, Schutt W R, et al.2021. Blockade of autocrine CCL5 responses inhibits Zika virus persis-tence and spread in human brain microvascular endothe-lial cells[J]. mBio, 12(4): e0196221. [56] Pontes M S, Van Waesberghe C, Nauwynck H, et al.2016.Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells[J]. Virus Research, 213:214-218. [57] Rahaus M, Desloges N, Wolff M H.2006. Varicella-zoster vi-rus influences the activities of components and targets of the ERK signalling pathway[J]. Journal of General Virology, 87(4): 749-758. [58] Rohde G, Stenglein S, Prozesky H, et al.2023. Efficacy and safety of zapnometinib in hospitalised adult patients with COVID-19(RESPIRE): A randomised, double-blind, placebo-controlled, multicentre, proof-of-concept, phase 2 trial[J]. Eclinicalmedicine, 65: 893635. [59] Rousseau S, Papoutsopoulou M, Symons A, et al.2008. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNFα in LPS-stimulated macrophages[J]. Journal of Cell Science, 121(2): 149-154. [60] Schräder T, Dudek S E, Schreiber A, et al.2018. The clinically approved MEK inhibitor Trametinib efficiently blocks Influenza A virus propagation and cytokine expression[J]. Antiviral Research, 157: 80-92. [61] Schreiber A, Ambrosy B, Planz O, et al.2022. The MEK1/2 in-hibitor ATR-002(Zapnometinib) synergistically potenti-ates the antiviral effect of direct-acting anti-SARS-coV-2 drugs[J]. Pharmaceutics, 14(9): 1776. [62] Schweneker M, Lukassen S, Späth M, et al.2012. The Vaccin-ia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence[J]. Journal of Virology, 86(4): 2323-2336. [63] Setas Pontes M, Devriendt B, Favoreel H W.2015. Pseudora-bies virus triggers glycoprotein gE-mediated ERK1/2 ac-tivation and ERK1/2-dependent migratory behavior in T cells[J]. Journal of Virology, 89(4): 2149-2156. [64] Shan C, Xu F, Zhang S, et al.2010. Hepatitis B virus X protein promotes liver cell proliferation via a positive cascade loop involving arachidonic acid metabolism and p-ERK1/2[J]. Cell Research, 20(5): 563-575. [65] Shao Y, Aplin A E.2012. ERK2 phosphorylation of serine 77 regulates Bmf pro-apoptotic activity[J]. Cell Death & Disease, 3(1): e253-e253. [66] Sharma-Walia N, Krishnan H H, Naranatt P P, et al.2005.ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-asso-ciated herpesvirus(Human herpesvirus 8) early during in-fection of target cells are essential for expression of viral genes and for establishment of infection[J]. Journal of Vi-rology, 79(16): 10308-10329. [67] Shimamura A, Ballif B A, Richards S A, et al.2000. Rsk1 me-diates a MEK-MAP kinase cell survival signal[J]. Cur-rent Biology, 10(3): 127-135. [68] Song J, Hou L, Quan R, et al.2022. Synergetic contributions of viral VP1, VP3, and 3C to activation of the AKT-AMPK-MAPK-MTOR signaling pathway for Seneca val-ley virus-induced autophagy[J]. Journal of Virology, 96(2): e01550-21. [69] Tozaki-Saitoh H, Sasaki I, Yamashita T, et al.2020. Involve-ment of exchange protein directly activated by cAMP and tumor progression locus 2 in IL-1β production in mi-croglial cells following activation of β-adrenergic recep-tors[J]. Journal of Pharmacological Sciences, 143(3): 133-140. [70] Ullah R, Yin Q, Snell A H, et al.2022. RAF-MEK-ERK path-way in cancer evolution and treatment[J]. Seminars in Cancer Biology, 85: 123-154. [71] Wang H, Liu D, Sun Y, et al.2021. Upregulation of DUSP6 im-pairs Infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis[J]. Veterinary Research, 52: 1-13. [72] Wang J, Whiteman M W, Lian H, et al.2009. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1[J]. Journal of Biological Chemistry,284(32): 21412-21424. [73] Yang J Y, Zong C S, Xia W, et al.2008. ERK promotes tumori-genesis by inhibiting FOXO3a via MDM2-mediated deg-radation[J]. Nature Cell Biology, 10(2): 138-148. [74] Yoshizuka N, Yoshizuka-Chadani Y, Krishnan V, et al.2005.Human immunodeficiency virus type 1 Vpr-dependent cell cycle arrest through a mitogen-activated protein kinase signal transduction pathway[J]. Journal of Virology, 79(17): 11366-11381. [75] You H, Pellegrini M, Tsuchihara K, et al.2006. FOXO3a-de-pendent regulation of Puma in response to cytokine/ growth factor withdrawal[J]. The Journal of Experimen-tal Medicine, 203(7): 1657-1663. [76] You H, Qin S, Zhang F, et al.2022. Regulation of pattern-rec-ognition receptor signaling by HBX during Hepatitis B vi-rus infection[J]. Frontiers in Immunology, 13: 829923. [77] Yue J, López J M.2020. Understanding MAPK signaling path-ways in apoptosis[J]. International Journal of Molecular Sciences, 21(7): 2346. [78] Zhang M, Lv L, Luo H, et al.2023. The CD2v protein of Afri-can swine fever virus inhibits macrophage migration and inflammatory cytokines expression by downregulating EGR1 expression through dampening ERK1/2 activity[J]. Veterinary Research, 54(1): 106. [79] Zhang R G, Liu X J, Guo Y L, et al.2024. SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release via ATP/P2Y(2) and ERK1/2 signaling pathways in human bronchial epithelia[J]. Molecular Immunology,167: 53-61. [80] Zheng M, Karki R, Williams E P, et al.2021. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines[J]. Nature Immunology, 22(7): 829-838. [81] Zhu B, Zhou Y, Xu F, et al.2012. Porcine circovirus type 2 in-duces autophagy via the AMPK/ERK/TSC2/mTOR sig-naling pathway in PK-15 cells[J]. Journal of Virology, 86(22): 12003-12012. |
|
|
|