|
|
Analysis of Genetic Characteristics of Cellulase in Potato Scab Pathogen in China |
HUANG Yi-Fan1, DING Yu2, YANG Yun-Shan1, ZHANG Cai-Hua1, ZHAO Chuan-Xiang1, CHEN Chen1, HAN Zhi-Ruo1, YU Xiu-Mei1,3*, ZHAO Wei-Quan2* |
1 College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071001, China; 2 College of Plant Protection/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China; 3 State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China |
|
|
Abstract Potato scab is a soil-borne disease caused by several scab-related Streptomyces spp., its' pathogenic mechanism remains unclear. Cellulase is reported as a key enzyme in many pathogens to infect the plant cell wall, the present study analyzed genetic characteristics of cellulase in the pathogenic Streptomyces spp. A total of 14 cellulases were identified from a typical potato common scab strain 87.22, although they had diversefunctional domain patterns, similar three-dimensional structures were detected in most of these cellulases. 7 pairs of gene specific primer were designed based on the sequence similarity of 14 cellulases, and used to amplify genomic DNA of 18 potato common scab strains and 5 potato scab pathogenic species collected fromdifferent potato (Solanum tuberosum) growing areas of China, it was found that 4 pairs of primers obtainedtarget bands in the 2 potato common scab strains No. MZ-4 and H2, and exhibited amplification polymorphism within the potato common scab strains as well as among potato scab pathogenic species, which indicated there was significant polymorphism in cellulases from different potato scab pathogens in China. Thisstudy provides a new support for in-depth analyzing the genetic diversity of the scab-related Streptomyces spp.
|
Received: 10 September 2024
|
|
Corresponding Authors:
*nongdayxm@163.com;zhaowquan@126.com
|
|
|
|
[1] 黄惠琴, 黄美容, 叶建军, 等. 2010. 2 株产纤维素酶放线菌的筛选及分类鉴定[J]. 微生物学杂志 , 30(1): 47-50. (Huang H Q, Huang M R, Ye J J, et al.2010. Screening and identification of two cellulase-producing Actinomy-cetes[J]. Journal of Microbiology, 30(1): 47-50.) [2] 黄勋, 刘霞, 邓琳梅, 等. 2024. 马铃薯疮痂病研究进展[J]. 植物病理学报 , 54(6): 1083-1090. (Huang X, Liu X, Deng L M, et al.2024. Advances in the study of potato scab[J]. Acta Phytopathologica Sinica, 54(6): 1083-1090.) [3] 李宝聚, 周长力, 赵奎华, 等. 2001. 黄瓜黑星病菌致病机理的研究Ⅲ细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用[J]. 植物病理学报, 31(1): 63-69. (Li B J,Zhou C L,Zhao K H, et al.2001. Pathogenic mech-anism of scab of cucumber caused by Cladosporium cuc-umerinum Ⅲ Effects and synergism of cell wall-degrad-ing enzymes and toxin produced by C. cucumerinum on ultrastructure of cucumber[J]. Acta Phytopathologica Si-nica, 31(1): 63-69.) [4] 田晓翔.2009. 纤维堆囊菌纤维素酶基因的生物信息学分析、异源表达及性质研究[D]. 硕士学位论文, 山东大学, 导师: 吴志红, 李越中, pp. 32-41. (Tian X X.2009. The bioinformatics analysis, heterologous expression and research of enzyme characteristics about Sorangium cellusosum cellulase genes[D]. Thesis for M. S., Shan-dong University, Supervisors: Wu Z H, Li Y Z, pp. 32-41.) [5] 许莹, 董胜男, 张青阳, 等. 2023. 植物毒素 thaxtomins 生物合成及其分子调控研究进展[J]. 微生物学通报, 50(3): 1281-1290. (Xu Y, Dong S N, Zhang Q Y, et al.2023.Advances in the biosynthesis of the plant toxin thax-tomins and its molecular regulation[J]. Microbiology Bulletin, 50(3): 1281-1290.) [6] 杨腾腾, 周宏, 王霞, 等. 2015. 微生物降解纤维素的新机制[J]. 微生物学通报, 42(5): 928-935. (Yang T T, Zhou H, Wang X, et al.2015. New mechanism of microbial cellu-lose degradation[J]. Chinese of Microbiology, 42(5): 928-935.) [7] 杨志敏, 毕阳, 李永才, 等. 2012. 马铃薯干腐病菌侵染过程中切片组织细胞壁降解酶的变化[J]. 中国农业科学,45(1): 127-134. (Yang Z M, Bi Y, Li Y C, et al.2012. Changes of cell wall degrading enzymes in potato tuber tissue slices infected by Fusarium sulphureum[J]. Scien-tia Agricultura Sinica, 45(1): 127-134.) [8] 银川, 杨艳红, 高焕方, 等. 2021. 纤维素酶的基因研究进展及其应用[J]. 纤维素科学与技术, 29(4): 71-78. (Yin C, Yang Y H, Gao H F, et al.2021. Research progress and application of cellulase gene[J]. Journal of Cellulose Science and Technology, 29(4): 71-78.) [9] 赵燕, 陈庚华, 周卫, 等. 2013. 纤维素酶及其基因研究进展[J]. 生物技术通报 ,(2): 35-40. (Zhao Y, Chen G H, Zhou W, et al. 2013. Progress of cellulase and cellulase gene research[J], Biotechnology Bulletin,(2): 35-40.) [10] Abdeljalil S, Borgi I, Hmad I B, et al.2023. Large-scale analy-sis of the genome of the rare alkaline-halophilic Stachy-botrys microspora reveals 46 cellulase genes[J]. FEBS Open Bio, 13(4): 670-683. [11] Adsul M G, Bastawade K B, Varma A J, et al.2007. Strain im-provement of Penicillium janthinellum NCIM 1171 for increased cellulase production[J]. Bioresource Technolo-gy, 98(7): 1467-1473. [12] Bouchek-Mechiche K, Gardan L, Normand P, et al.2000.DNA relatedness among strains of Streptomyces patho-genic to potato in France: Description of three new spe-cies, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticulisca-biei sp. nov. associated with netted scab[J]. International Journal of Systematic and Evolutionary Microbiology,50(1): 91-99. [13] Fatani S, Saitol Y, Alarawi M, et al.2021. Genome sequenc-ing and identification of cellulase genes in Bacillus para-licheniformis strains from the Red Sea[J]. BMC Microbi-ology, 21(1): 1-12. [14] Feng Y, Duan C J, Pang H, et al.2007. Cloning and identifica-tion of novel cellulase genes from uncultured microor-ganisms in rabbit cecum and characterization of the ex-pressed cellulases[J]. Applied Microbiology and Bio-technology, 75(2): 319-328. [15] Gong C S, Ladisch M R, Tsao G T.1979. Biosynthesis, purifi-cation, and mode of action of cellulases of Trichoderma reesei[J]. Advances in Chemistry Series, 181: 261-288. [16] Houston K, Tucker M R, Chowdhury J, et al.2016. The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions[J]. Frontiers in Plant Science, 7(10): 984. [17] Huang Y, Busk P K, Lange L.2015. Cellulose and hemicellu-lose-degrading enzymes in Fusarium commune transcrip-tome and functional characterization of three identified xylanases[J]. Enzyme and Microbial Technology, 73-74:9-19. [18] Ichinose S, Tanaka M, Shintani T, et al.2018. Increased pro-duction of biomass-degrading enzymes by double dele-tion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 125(2): 141-147. [19] Lambert D H, Loria R.1989a. Steptomyces acidiscabies sp. nov[J]. International Journal of Systematic Bacteriology,39: 393-396. [20] Lambert D H, Loria R.1989b. Streptomyces scabies sp. nov., nom. rev[J]. International Journal of Systematic Bacteri-ology, 39: 387-392. [21] Lima A L D G, Nascimento R P D, Bon E P S S, et al.2005.Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries[J]. Enzyme and Microbi-al Technology, 37(2): 272-277. [22] Miyajima K, Tanaka F, Takeuchi T, et al.1998. Streptomyces turgidiscabies sp. nov[J]. International Journal of Sys-tematic Bacteriology, 2(2): 495-502. [23] Okunowo W O, Gbenle G O, Osuntoki A A, et al.2010. Pro-duction of cellulolytic and xylanolytic enzymes by a phytopathogenic Myrothecium roridum and some aviru-lent fungal isolates from water hyacinth[J]. African Jour-nal of Biotechnology, 9(15): 1074-1078. [24] Park D H, Kim J S, Kwon S W, et al.2003. Streptomyces luri-discabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea[J]. International Journal of Systematic and Evolutionary Microbiology, 53(6): 2049-2054. [25] Shambe T, Ejembi O.1987. Production of amylase and cellu-lase: Degradation of starch and carboxymethylcellulose by extracellular enzymes from four fungal species[J]. Enzyme & Microbial Technology, 9(5): 308-312. |
|
|
|