|
|
Research Progress on the Application of Antimicrobial Peptides |
GAO Nan, LI Yi-Han, SUN Jia-Qi, BI Chong-Peng, SHAN An-Shan*, WANG Jia-Jun* |
College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China |
|
|
Abstract The inappropriate utilization of antibiotics has precipitated a multitude of concerns, prominently featuring drug residues and the proliferation of drug-resistant bacteria. Drug residues, by way of the food chain, can inflict deleterious effects on human health and instigate ecological environmental contamination. Concurrently, drug-resistant bacteria present formidable challenges in the treatment of infectious diseases, engender a substantial escalation in medical expenditures, and, in severe cases, imperil human lives. Antimicrobial peptides (AMPs), with their multiple biological functions and unique mechanisms of action, have emerged as promising alternatives to antibiotics. Furthermore, their low toxicity and reduced likelihood of resistance development have driven research beyond theoretical studies to practical applications in production systems. This review summarizes the mechanisms of action of AMPs and their research and applications in clinical practice, the food industry, and agricultural production. The review provides a theoretical foundation for developing novel anti-infection strategies, ensuring food safety, and promoting sustainable agriculture. This work holds critical value for addressing global antimicrobial resistance challenges and achieving sustainable development goals.
|
Received: 20 December 2024
|
|
Corresponding Authors:
*asshan@neau.edu.cn;wjj1989@neau.edu.cn
|
|
|
|
[1] 淡江华, 李国柱, 冯燕平, 等. 2024. 不同饲料添加剂对断奶仔猪生长性能、免疫性能、肠道健康及粪便微生物的影响[J]. 动物营养学报 , 36: 5581-5593. (Tan J H, Li G Z, Feng Y P, et al.2024. Effects of different feed additives on growth perfor-mance, immune performance, gut health, and fecal microbiota of weaned piglets[J]. Journal of Animal Nutrition, 36: 5581-5593.) [2] 韩素冰.2024. 两种抗菌肽 CATHPb1 和 As-CATH4 在亚心型四爿藻中的串联表达及功能分析[D]. 硕士学位论文, 烟台大学, 导师: 崔玉琳, 赵振军. pp. 41-48. (Han S B.2024. Tandem ex-pression and functional analysis of two antimicrobial peptides, CATHPb1 and As-CATH4, in Tetraselmis subcordiformis[D]. Thesis for M.S., Yantai University, Supervisors: Cui Y L, Zhao Z J. pp. 41-48.) [3] 黄杰, 阮子豪, 蔡瑞. 2024. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报: 55(4): 1401-1411. (Huang J, Ruan Z H, Cai R.2024. Advances in the application of antimicrobial peptides in the preservation of porcine semen at room tempera-ture[J]. Acta Veterinaria et Zootechnica Sinica, 55(4): 1401-1411.) [4] 黄荣春, 包书芳, 辛秀克, 等. 2021. 抗菌肽在妊娠母猪生产中的应用研究[J]. 中国动物保健 , 23: 66-68. (Huang R C, Bao S F, Xin X K, et al.2021. Research on the application of antimicro-bial peptides in the production of pregnant sows[J]. China Ani-mal Health, 23: 66-68.) [5] 李瑾, 王远卓. 2023. 不同水平抗菌肽对育肥猪生长性能,血清生化指标及肉品质的影响[J]. 中国饲料: 54-57. (Li J, Wang Y Z.2023. Effects of different levels of antimicrobial peptides on growth performance, serum biochemical indicators, and meat quality of finishing pigs[J]. China Feed: 54-57.) [6] 刘景喜, 史夏斌, 靳文仲, 等. 2018. 牛乳铁蛋白肽对隐性乳房炎奶牛产奶量、体细胞及乳成分的影响[J]. 天津农业科学, 24: 51-54. (Liu J X, Shi X B, Jin W Z, et al.2018. Effects of bovine lactoferricin on milk yield, somatic cell count, and milk compo-sition in dairy cows with subclinical mastitis[J]. Tianjin Agri-cultural Science, 24: 51-54.) [7] 任洪辉, 晋美多吉, 赖可, 等. 2017. 补饲饲粮中添加天蚕素抗菌肽对放牧断奶藏猪仔猪生长性能的影响[J]. 华南农业大学学报: 41-43. (Ren H H, Jin Midrogy, Lai K, et al.2017. Effects of adding Cecropin antimicrobial peptide in supplemental feed on the growth performance of grazing weaned tibetan piglets[J]. Journal of South China Agricultural University, 38(4): 41-43.) [8] 田丽娜, 王秀荣, 李广兴. 2020. 抗菌肽 Sublancin 对蛋鸡免疫功能的影响研究[J]. 中国预防兽医学报, 42: 268-273. (Tian L N, Wang X R, Li G X.2020. Research on the effects of antimicro-bial peptide sublancin on the immune function of laying hens[J]. Chinese Journal of Preventive Veterinary Medicine, 42:268-273.) [9] 万遂如.2009. 用新型抗菌药物防控猪病[J]. 新农业,(12): 29-31. (Wan S R. 2009. Prevention and control of swine diseases us-ing new types of antibacterial drugs[J]. New Agriculture,(12): 29-31.) [10] 王棚.2016. 牛蛙皮肤抗菌肽 Catesbeianin-1 在 PichiaPink 中表达条件的优化及其粗提物对产蛋后期鸡的影响[D]. 硕士学位论文, 吉林大学, 导师: 韩文瑜, pp. 25-37. (Wang P.2016. Opti-mization of expression conditions of antimicrobial peptide Catesbeianin-1 from bullfrog skin in pichiapink and its crude extract on late-laying hens[D]. Thesis for M. S., Jilin Universi-ty, Supervisor: Han W Y, pp. 25-37.) [11] 鄢陆琪, 谭明辉, 李昆太. 2023. 海洋微生物源抗菌肽对鲜榨黄瓜汁贮藏品质的影响[J]. 食品工业科技 , 44: 398-406. (Yan L Q, Tan M H, Li K T.2023. Effects of marine microbial antimicrobi-al peptides on the storage quality of freshly squeezed cucumber juice[J]. Journal of Food Industry Science and Technology, 44(18): 398-406.) [12] 张静, 马景林, 孙丹丹, 等. 2020. 菌丝霉素对生长育肥猪生长性能、 血清生化指标和肠道健康的影响[J]. 中国畜牧杂志, 56: 138-143. (Zhang J, Ma J L, Sun D D, et al.2020. Effects of plecta-sin on growth performance, serum biochemical indices, and gut health in growing-finishing pigs[J]. Chinese Journal of Animal Science, 56(1): 138-143.) [13] 张磊, 田颖, 王秀娜, 等. 2016. 抗菌肽对产蛋后期蛋鸡的生产性能及鸡蛋中营养成分的影响[J]. 饲料工业 , 37(08): 32-35. (Zhang L, Tian Y, Wang X N, et al.2016. Effects of antimicro-bial peptides on production performance and nutritional compo-sition of eggs in late-laying hens[J]. Feed Industry, 37(08): 32-35.) [14] Ajish C, Kumar S D, Kim E Y, et al.2022. A short novel antimicrobi-al peptide BP100-W with antimicrobial, antibiofilm and anti-in-flammatory activities designed by replacement with tryptophan[J]. Journal of Analytical Science and Technology, 13(1): 46. [15] Al Musaimi O.2025. FDA-approved antibacterials and echinocandins[J]. Antibiotics, 14(2): 166. [16] Ali D, Hassan K, Hadi S M, et al.2019. Antimicrobial peptide, cLF36, affects performance and intestinal morphology, micro-flora, junctional proteins, and immune cells in broilers chal-lenged with E. coli[J]. Scientific Reports, 9(1): 14176. [17] Andersson D I, Hughes D, Kubicek-Sutherland J Z.2016. Mecha-nisms and consequences of bacterial resistance to antimicrobial peptides[J]. Drug Resistance Updates, 26: 43-57. [18] Bai A D, Lo C K L, Komorowski A S, et al.2022. Staphylococcus aure-us bacteraemia mortality: A systematic review and meta-analy‐sis[J]. Clinical Microbiology and Infection, 28(8): 1076-1084. Baindara P, Mandal S M. 2022. Plant-derived antimicrobial peptides:Novel preservatives for the food industry[J]. Foods, 11(16): 2415. [19] Bhattacharjya S, Zhang Z, Ramamoorthy A.2024. LL-37: Structures, antimicrobial activity, and influence on amyloid-related diseas-es[J]. Biomolecules, 14(3): 320. [20] Brogden K A.2005. Antimicrobial peptides: Pore formers or metabol-ic inhibitors in bacteria?[J]. Nature Reviews Microbiology, 3(3): 238-250. [21] Browne K, Chakraborty S, Chen R, et al.2020. A New era of antibiot-ics: The clinical potential of antimicrobial peptides[J]. Interna-tional Journal of Molecular Sciences, 21(19): 7047. [22] Bussalleu E, Sancho S, Briz M D, et al.2017. Do antimicrobial pep-tides PR-39, PMAP-36 and PMAP-37 have any effect on bacte-rial growth and quality of liquid-stored boar semen?[J]. Therio-genology, 89: 235-243. [23] Chen M, Xiao Z, Yan C, et al.2024. Centrosomal protein of 192 kDa(Cep192) fragment possesses bactericidal and parasiticidal ac-tivities in Larimichthys crocea[J]. International Journal of Bio-logical Macromolecules, 254(Pt 1): 127744. [24] Chen X C, Zhan Y W, Ma W F, et al.2020. Effects of antimicrobial peptides on egg production, egg quality and caecal microbiota of hens during the late laying period[J]. Animal Science Jour-nal, 91(1): e13387. [25] Chen Y, Qian H, Peng D, et al.2023. Antimicrobial peptide-modified AIE visual composite wound dressing for promoting rapid heal-ing of infected wounds[J]. Frontiers in Bioengineering and Bio-technology, 11: 1338172. [26] Cheng Y H, Liu B Q, Cui B, et al.2023. Alanine substitution to deter-mine the effect of LR5 and YR6 rice peptide structure on anti-oxidant and anti-inflammatory activity[J]. Nutrients, 15(10): 2373. [27] Chessa C, Bodet C, Jousselin C, et al.2020. Antiviral and immuno-modulatory properties of antimicrobial peptides produced by human keratinocytes[J]. Frontiers in Microbiology, 11: 1155. [28] Chianese A, Zannella C, Monti A, et al.2022. The broad-spectrum an-tiviral potential of the amphibian peptide AR-23[J]. Internation-al Journal of Molecular Sciences, 23(2): 883. [29] Deng Q, Pu Y, Sun L, et al.2017. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces[J]. Food Research International, 102:8-13. [30] Denning D W.2024. Global incidence and mortality of severe fungal disease[J]. The Lancet Infectious Diseases, 24(7): e428-e438. [31] Dijksteel G S, Ulrich M M W, Middelkoop E, et al.2021. Lessons learned from clinical trials using antimicrobial peptides(AMPs)[J]. Frontiers in Microbiology, 12: 616979. [32] Dizaj S M, Salatin S, Khezri K, et al.2022. Targeting multidrug resis-tance with antimicrobial peptide-decorated nanoparticles and polymers[J]. Frontiers in Microbiology, 13: 831655. [33] Dong Z Y, Zhang X Y, Zhang Q, et al.2024. Anticancer mechanisms and potential anticancer applications of antimicrobial peptides and their nano agents[J]. International Journal of Nanomedi-cine, 19: 1017-1039. [34] Eldib R, Khojah E, Elhakem A, et al.2020. Chitosan, nisin, silicon di-oxide nanoparticles coating films effects on blueberry(Vaccini-um myrtillus) quality[J]. Coatings, 10(10): 962. [35] Feng J, Wang L, Xie Y, et al.2020. Effects of antimicrobial peptide cathelicidin-BF on diarrhea controlling, immune responses, in-testinal inflammation and intestinal barrier function in piglets with postweaning diarrhea[J]. International Immunopharmacol-ogy, 85: 106658. [36] Gao N, Bai P F, Fang C Y, et al.2024. Biomimetic peptide nanonets: Exploiting bacterial entrapment and macrophage rerousing for combatting infections[J]. ACS Nano, 18(37): 25446-25464. [37] Gharsallaoui A, Oulahal N, Joly C, et al.2016. Nisin as a food preser-vative: Part 1: Physicochemical properties, antimicrobial activi-ty, and main uses[J]. Critical Reviews in Food Science and Nu-trition, 56(8): 1262-1274. [38] Gunasekera S, Muhammad T, Strömstedt A A, et al.2020. Backbone cyclization and dimerization of LL-37-derived peptides en-hance antimicrobial activity and proteolytic stability[J]. Fron-tiers in Microbiology, 11: 168. [39] Guo C, Hu Y H, Li J, et al.2014. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amo-lops granulosus[J]. Biochimie, 105: 192-201. [40] Han D A, Ren T, Yang Y M, et al.2024. Application and substitution of antibiotics in animal feeding[J]. Medicine Weter, 80(1): 5-11. Hancock R E. 2000. Cationic antimicrobial peptides: towards clinical applications[J]. Expert Opinion on Investigational Drugs, 9(8): 1723-1729. [41] Hawksworth D L, Lücking R.2017. Fungal diversity revisited: 2.2 to 3.8 million species[J]. Microbiology Spectrum, 5(4): 1128. [42] Hemmati S, Saeidikia Z, Seradj H, et al.2024. Immunomodulatory peptides as vaccine adjuvants and antimicrobial agents[J]. Phar‐maceuticals, 17(2): 201. [43] Hensel B, Jakop U, Scheinpflug K, et al.2020. Low temperature pres-ervation of porcine semen: Influence of short antimicrobial li-popeptides on sperm quality and bacterial load[J]. Science Re‐ports, 10(1): 13225. [44] Hultmark D, Steiner H, Rasmuson T, et al.1980. Insect immunity. Pu-rification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. European Journal of Biochemistry, 106(1): 7-16. [45] Huo X, Zhang Q, Chang J, et al.2023. Nanopeptide C-I20 as a novel feed additive effectively alleviates detrimental impacts of soy-bean meal on mandarin fish by improving the intestinal muco-sal barrier[J]. Frontiers in Immunology, 14: 1197767. [46] Jabeen M, Biswas P, Islam M T, et al.2023. Antiviral peptides in anti-microbial surface coatings-from current techniques to potential applications[J]. Viruses-Basel, 15(3): 640. [47] Jafari A, Babajani A, Forooshani R S, et al.2022. Clinical applica-tions and anticancer effects of antimicrobial peptides: From bench to bedside[J]. Frontiers in Oncology, 12: 819563. [48] Jahan I, Kumar S D, Shin S Y, et al.2023. Multifunctional properties of BMAP-18 and its aliphatic analog against drug-resistant bac-teria[J]. Pharmaceuticals, 16(10): 1356. [49] Ji F, Yang H, Wang Q, et al.2023. Porcine intestinal antimicrobial peptide as an in-feed antibiotic alternative improves intestinal digestion and immunity by shaping the gut microbiota in weaned piglets[J]. Animal Nutrition, 14: 43-55. [50] Kosmidis C, Levine D P.2010. Daptomycin: Pharmacology and clini‐cal use[J]. Expert Opinion on Pharmacotherapy, 11(4): 615-625. [51] Li H X, Niu J H, Wang X L, et al.2023. The contribution of antimi-crobial peptides to immune cell function: A review of recent ad‐vances[J]. Pharmaceutics, 15(9): 2278. [52] Li X, Wang W, Liu S, et al.2019. Effects of the peptide H-OOWW-NH2 and its derived lipopeptide C12-OOWW-NH2 on control-ling of citrus postharvest green mold[J]. Postharvest Biology and Technology, 158: 110979. [53] Li X, Zuo S Y, Wang B, et al.2022. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J]. Mol-ecules, 27(9): 2675. [54] Li Z J, Qu W Z, Zhang D D, et al.2023. The antimicrobial peptide chensinin-1b alleviates the inflammatory response by targeting the TLR4/NF-κB signaling pathway and inhibits Pseudomonas aeruginosa infection and LPS-mediated sepsis[J]. Biomedicine & Pharmacotherapy, 165: 115227. [55] Liang C Z, Wang H Y, Lin Z H, et al.2023. Augmented wound heal-ing potential of photosensitive GelMA hydrogel incorporating antimicrobial peptides and MXene nanoparticles[J]. Frontiers in Bioengineering and Biotechnology, 11: 1310349. [56] Lima P G, Freitas C D T, Oliveira J T A, et al.2021. Synthetic antimi‐crobial peptides control Penicillium digitatum infection in or‐ange fruits[J]. Food Research International, 147: 110582. [57] Liu Q, Yao S, Chen Y, et al.2017. Use of antimicrobial peptides as a feed additive for juvenile goats[J]. Science Reports, 7(1): 12254. [58] Lopes N A, Brandelli A.2018. Nanostructures for delivery of natural antimicrobials in food[J]. Critical Reviews in Food Science and Nutrition, 58(13): 2202-2212. [59] Ma Z, Wang X, Li C.2020. Strategies of drug delivery for deep fun-gal infection: A review[J]. Pharmaceutical Nanotechnology, 8(5): 372-390. [60] Małaczewska J, Kaczorek-Łukowska E, Wójcik R, et al.2019. Antivi‐ral effects of nisin, lysozyme, lactoferrin and their mixtures against Bovine viral diarrhoea virus[J]. BMC Veterinary Re-search, 15(1): 318. [61] Maresca D, Mauriello G.2022. Development of antimicrobial cellu-lose nanofiber-based films activated with nisin for food packag-ing applications[J]. Foods, 11(19): 3051. [62] Moghadam A, Niazi A, Afsharifar A, et al.2016. Expression of a re-combinant anti-HIV and anti-tumor protein, MAP30, in Nicotia-na tobacum Hairy Roots: A pH-stable and thermophilic antimi‐crobial protein[J]. PLOS One, 11(7): e0159653. [63] Musale V, Moffett R C, Owolabi B, et al.2021. Mechanisms of action of the antidiabetic peptide [S4K] CPF-AM1 in db/db mice[J]. Journal of Molecular Endocrinology, 66(2): 115-128. [64] Osusky M, Osuska L, Hancock R E, et al.2004. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot[J]. Transgenic Research, 13(2): 181-190. [65] Petkovic M, Mouritzen M V, Mojsoska B, et al.2021. Immunomodu-latory properties of host defence peptides in skin wound healing[J]. Biomolecules, 11(7): 952. [66] Ranjith F H, Adhikari B, Muhialdin B J, et al.2022. Peptide-based ed‐ible coatings to control postharvest fungal spoilage of mango(Mangifera indica L.) fruit[J]. Food Control, 135: 108789. [67] Ripperda T, Yu Y S, Verma A, et al.2022. Improved database filtering technology enables more efficient ab initio design of potent peptides against ebola viruses[J]. Pharmaceuticals, 15(5): 521. [68] Saini J, Kaur P, Malik N, et al.2022. Antimicrobial peptides: A prom-ising tool to combat multidrug resistance in SARS CoV2 era[J]. Microbiological Research, 265: 127206. [69] Saravanan P, Pooja R, Balachander N, et al.2023. Anti-inflammatory and wound healing properties of lactic acid bacteria and its pep-tides[J]. Folia Microbiologica, 68(3): 337-353. [70] Shao Y, Wang Y, Yuan Y, et al.2021. A systematic review on antibiot-ics misuse in livestock and aquaculture and regulation implica-tions in China[J]. Science of the Total Environment, 798:149205.Shin J M, Gwak J W, Kamarajan P, et al. 2016. Biomedical applica‐tions of nisin[J]. Journal of Applied Microbiology, 120(6): 1449-1465. [71] Shin M K, Hwang I W, Jang B Y, et al.2023. The identification of a novel spider toxin peptide, Lycotoxin-Pa2a, with antibacterial and anti-inflammatory activities[J]. Antibiotics-Basel, 12(12): 1708. [72] Singh B P, Rohit, Manju K M, et al.2023. Nano-conjugated food-de-rived antimicrobial peptides as natural biopreservatives: A re-view of technology and applications[J]. Antibiotics(Basel), 12(2): 244. [73] Solanki S S, Singh P, Kashyap P, et al.2021. Promising role of defen-sins peptides as therapeutics to combat against viral infection[J]. Microbial Pathogenesis, 155: 104930. [74] Soltaninejad H, Zare-Zardini H, Ordooei M, et al.2021. Antimicrobi-al peptides from amphibian innate immune system as potent an-tidiabetic agents: A literature review and bioinformatics analy-sis[J]. Journal of Diabetes Research, 2021(1): 2894722. [75] Strzelecka P, Czaplinska D, Sadej R, et al.2017. Simplified, serine-rich theta-defensin analogues as antitumour peptides[J]. Chemi-cal Biology & Drug Design, 90(1): 52-63. [76] Tao L, Gu F, Liu Y, et al.2022. Preparation of antioxidant peptides from Moringa oleifera leaves and their protection against oxida‐tive damage in HepG2 cells[J]. Frontiers in Nutrition, 9:1062671. [77] Tonk M, Ruzek D, Vilcinskas A.2021. Compelling evidence for the activity of antiviral peptides against SARS-CoV-2[J]. Viruses-Basel, 13(5): 912. [78] Tornesello A L, Borrelli A, Buonaguro L, et al.2020. Antimicrobial peptides as anticancer agents: Functional properties and biolog-ical activities[J]. Molecules, 25(12): 2850. [79] Velden W J, van Iersel T M, Blijlevens N M, et al.2009. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11(hLF1-11)[J]. BMC Medicine, 7: 44. [80] Wang G, Song Q, Huang S, et al.2020. Effect of antimicrobial pep-tide Microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella[J]. Animals(Basel), 10(2): 345. [81] Wang J, Wilson A E, Su B, et al.2023a. Functionality of dietary anti-microbial peptides in aquatic animal health: Multiple meta-analyses[J]. Animal Nutrition, 12: 200-214. [82] Wang K, Jiao X D, Chu J L, et al.2023. Bait microalga harboring anti-microbial peptide for controlling Vibrio infection in Argopecten irradians aquaculture[J]. Aquaculture, 565: 739128. [83] Wang W, Feng G, Li X, et al.2021. Inhibition of three citrus patho-genic fungi by peptide PAF56 involves cell membrane damage[J]. Foods, 10(9): 2031. [84] Wang X, Han M, Zou L, et al.2023b. Preparation and characteriza-tion of pickering emulsion with directionally embedded antimi-crobial peptide MOp2 and its preservation effect on grass carp[J]. Current Research in Food Science, 7: 100569. [85] Wang X, Ren S G, Guo C, et al.2017. Identification and functional analyses of novel antioxidant peptides and antimicrobial pep-tides from skin secretions of four East Asian frog species[J]. Acta Biochimica Et Biophysica Sinica, 49(6): 550-559. [86] Wu J, Hu S, Cao L.2007. Therapeutic effect of nisin Z on subclinical mastitis in lactating cows[J]. Antimicrobial Agents and Chemo-therapy, 51(9): 3131-3135. [87] Xie Z, Zhao Q, Wang H, et al.2020. Effects of antibacterial peptide combinations on growth performance, intestinal health, and im-mune function of broiler chickens[J]. Poult Science, 99(12): 6481-6492. [88] Yang S, Li J, Aweya J J, et al.2020. Antimicrobial mechanism of Lar-imichthys crocea whey acidic protein-derived peptide(LC-WAP) against Staphylococcus aureus and its application in milk[J]. International Journal of Food Microbiology, 335: 108891. [89] Yang Z, He S, Wei Y, et al.2023. Antimicrobial peptides in combina-tion with citronellal efficiently kills multidrug resistance bacte-ria[J]. Phytomedicine, 120: 155070. [90] Sun Y X, Li D C, Zhang H, et al.2023. Dietary supplement of Anther-aea pernyi cecropin enhances the growth rate and disease resis-tance of the Yesso scallop, Patinopecten yessoensis[J]. Aquacul-ture Reports, 31: 101634. [91] Zhang M, Yu Y, Lian L, et al.2022. Functional mechanism of antimi-crobial peptide bomidin and its safety for Macrobrachium rosen-bergii[J]. Probiotics and Antimicrobial Proteins, 14(1): 169-179. [92] Zhao X, Chen L, Wu J, et al.2020. Elucidating antimicrobial mecha-nism of nisin and grape seed extract against Listeria monocyto-genes in broth and on shrimp through NMR-based metabolo-mics approach[J]. International Journal of Food Microbiology,319: 108494. [93] Zhou L, Meng G, Zhu L, et al.2024. Insect antimicrobial peptides as guardians of immunity and beyond: A review[J]. International Journal of Molecular Sciences, 25(7): 3835. [94] Zhu C L, Bai Y L, Xia X J, et al.2022. Effects of the antimicrobial peptide Mastoparan X on the performance, permeability and microbiota populations of broiler chickens[J]. Animals, 12(24): 3462-3462. [95] Zhuo H W, Zhang X, Li M G, et al.2022. Antibacterial and anti-in-flammatory properties of a novel antimicrobial peptide derived from LL-37[J]. Antibiotics-Basel, 11(6): 754. |
|
|
|