|
|
Analysis on the Basic Characteristics of the Effector Pt31812 of Puccinia triticina |
WEN Xiao-Lei1,2, LI Jian-Yuan3, LI Ming-Yuan2, LI Hao1, ZHANG Na1, YANG Wen-Xiang1* |
1 College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, China; 2 Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; 3 College of Bioscience and Bioengineering, Xingtai University, Xingtai 054000, China |
|
|
Abstract Effectors play an important role in the process of pathogen invasion of plants. Understanding their functions is the key to analyzing the pathogenic mechanism of pathogenicity. In order to reveal the pathogenic mechanism of Puccinia triticina (Pt), based on the analysis of the biological information of effector Pt31812, the basic characteristics of the effector Pt31812 were analyzed using the secreting system of saccharase- deficient yeast, qRT-PCR and bacterial type Ⅲ secreting system. The results showed that Pt31812 CDS was 627 bp, encoding 208 amino acid, with 7 serine, 3 threonine and 2 tyrosine potential phosphorylation sites. The N-terminus has a hydrophobic structure, 1~20 amino acids were signal peptides, and had a secretory function, had no transmembrane domain, and did not act on mitochondria. It could inhibit the programmed cell death (PCD) induced by the Pseudomonas syringae pathovar. tomato strain DC3000 in wheat leaves. The gene began to express in the early stage of leaf rust infection, and the expression level was the highest at 96 and 36 h in the compatible and incompatible interactions, respectively. It could inhibit the deposition of callose and accumulation of reactive oxygen species in wheat both 'Thatcher' ('Tc') and 'TcLr1', as well as the expression of pathogenesis-related proteins gene 1 (TaPR1) and TaPR2, interfering with the host defense response. The results provide theoretical basis for further study of the pathogenic mechanism of wheat leaf rust and have guiding significance for durable resistant breeding.
|
Received: 24 December 2024
|
|
Corresponding Authors:
*wenxiangyang2003@163.com
|
|
|
|
[1] 高颖, 赵娜, 赵雪芳, 等. 2019. 182 份黄淮海麦区小麦品种(系)苗期抗叶锈病基因分析[J]. 植物遗传资源学报, 20(05): 1213-1222. (Gao Y, Zhao N, Zhao X F, et al.2019. Identification of leaf rust resistance at seeding stage and analysis of Lr genes in 182 Huang-huai-hai wheat culti-vars(lines)[J]. Journal of Plant Genetic Resources, 20(05): 1213-1222.) [2] 黄瑾, 张勃, 孙振宇, 等. 2022. 2016-2019 年甘肃省小麦叶锈菌群体结构及多样性分析[J]. 麦类作物学报, 42(06): 764-772. (Huang J, Zhang B, Sun Z Y, et al.2022. Popu-lation structure and diversity analysis of Puccinia tritici-nain Gansu province from 2016-2019[J]. Joural of Triti-ceae Crops, 42(06): 764-772.) [3] 李建嫄.2018. 基于转录组分析的小麦叶锈菌效应蛋白的筛选及功能分析[D]. 博士学位论文, 河北农业大学, 导师 : 杨文香 , pp: 37-49. (Li J Y.2018. Screening and functional analysis of effector proteins based on Puccin-ia triticina transcriptome[D]. Thesis of Ph. D, Hebei Ag-ricultural University, Supervisor: Yang W X, pp: 37-49.) [4] 齐悦, 张悦, 李建嫄, 等. 2020a. 利用本氏烟筛选小麦叶锈菌效应蛋白[J]. 农业生物技术学报, 28(01): 150-159. (Qi Y, Zhang Y, Li J Y, et al.2020a. Effector screening of Puccinia triticina by Nicotiana benthamiana[J]. Journal of Agricultural Biotechnology, 28(01): 150-159.) [5] 齐悦, 吕峻元, 张悦, 等. 2020b. 小麦叶锈菌效应蛋白 Pt18906 激发 TcLr27+31 的双层防御反应[J]. 中国农业科学, 53(12): 2371-2384. (Qi Y, Lv J Y, Zhang Y,Wei J, et al.2020b. Puccinia triticina Effector protein Pt18906 triggered two-layer defense reaction in TcLr27+31[J]. Scientia Agricultura Sinica, 53(12): 2371-2384.) [6] 张键, 曹雄, 杨剑锋, 等. 2022. 活性氧及抗病信号分子介导的向日葵抗黄萎病机制初探[J]. 华北农学报, 37(03): 193-199. (Zhang J, Cao X, Yang J F, et al.2022. Prilmi-nary study on the mechanism of resistance to sunflower verticillium wilt mediated by reactive oxygen and sig-naling molecules[J]. Acta Agriculturae Boreali-Sinica,37(03): 193-199.) [7] 张悦.2020. 小麦叶锈菌效应蛋白 Pt2567 的特性及功能分析[D]. 硕士学位论文, 河北农业大学, 导师: 杨文香. pp. 22-23. (Zhang Y.2020. Characters and functional analysis of effector protein Pt2567 in Puccinia triticina [D]. Thesis of M. S, Hebei Agricultural University, Su-pervisor: Yang W X. pp. 22-23) [8] 赵丽坤, 廖祥儒, 蒋继志.2002. 活性氧与植物系统获得抗病性研究进展[J]. 河北农业大学学报 , S1: 173-176. (Zhan L K, Liao X R, Jiang J Z, et al.2002. Study ad-vance in active oxygen and plant systemic acquired re-sistance[J]. Journal of Agricultural University of Hebei, S1: 173-176.) [9] 郑清岭, 杨忠仁, 张凤兰, 等. 2018. 沙芥属植物活性氧清除系统对干旱胁迫的响应[J]. 西北植物学报 , 38(9): 1674 -1682. (Zheng Q L, Yang Z R, Zhang F L, et al.2018. Responsesof reactive oxygen species scavenging systemto drought stress in pugionium gaertn[J]. Acta Botanica Boreai-occidentalia Sinica, 38(9): 1674-1682.) [10] Bruce M, Neugebauer K A, Joly D L, et al.2014. Using tran-scription of six Puccinia triticina races to identify the ef-fective secretome during infection of wheat[J]. Frontiers in Plant Science, 13(4): 520. [11] Catanzariti A M, Dodds P N, Ellis J G.2007. Avirulence pro-teins from haustoria-forming pathogens[J]. FEMS Mi-crobiology Letters, 269(2): 181-188. [12] Chang J Y, Mapuranga J, Wang X D, et al.2024a. A thaumatin-like effector protein suppresses the rust resistance of wheat and promotes the pathogenicity of Puccinia triticina by targeting TaRCA[J]. New Phytologist, 244: 1947-1960. Chang J Y, Mapuranga J, Li R L, et al. 2024b, Wheat leaf rust fungus effector protein Pt1641 is avirulent to TcLr1[J]. Plants(Basel), 13(16): 2255. [13] Cui Z C, Shen S S, Meng L S, et al.2024. Evasion of wheat resistance gene Lr15 recognition by the leaf rust fungus is attributed to the coincidence of natural mutations and deletion in AvrLr15 gene[J]. Molecular Plant Pathology,25(7): e13490. [14] Geng H M, Zhang Y J, Qin Z, et al.2025. Puccinia triticina ef-fector Pt-1234 modulates wheat immunity by targeting transcription factor TaNAC069 via its C subdomain[J]. Crop Journal, 13(1): 69-78. [15] Giraldo M C, Valent B.2013. Filamentous plant pathogen ef-fectors inaction[J]. Nature Reviews Microbiology, 11(11): 800-814. [16] Liu C, Wang Y, Wang Y, et al.2022. Glycine-serine-rich effec-tor PstGSRE4 in Puccinia striiformis f. sp. tritici inhibits the activityof copper zinc superoxide dismutase to mod-ulate immunity in wheat[J]. PLOS Pathogens, 18(7): e1010702. [17] Lo Presti L, Lanver D, Schweizer G, et al.2015. Fungal effec-tors and plant susceptibility[J]. Annual Review of Phyto-pathology, 66(1): 513-545. [18] Pretsch K, Kemen A, Kemen E, et al.2013. The rust trans-ferred proteins-a new family of effector proteins exhibit-ing protease inhibitor function[J]. Molecular Plant Pa-thology, 14(1): 96-107. [19] Qi T, Guo J, Liu P, Liu P, et al.2019. Stripe rust effector PstG-SRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced de-fense in wheat[J]. Molecular Plant, 12(12): 1624-1638. [20] Qi Y, Li J Y, Mapuranga J, et al.2023. Wheat leaf rust fungus effector Pt13024 is avirulent to TcLr30[J]. Frontiers in Plant Science, 13: 1098549. [21] Raffaele S, Win J, Cano L M, et al.2010. Analyses of genome architecture and geneexpression reveal novel candidate virulence factors in the secretome of Phytophthora infes-tans[J]. BMC Genomics, 11(1): 1-18. [22] Segovia V, Bruce M, Rupp J L S, et al.2016. Two small se-creted proteins from Puccinia triticina induce reduction of β -glucoronidase transient expression in wheat iso-lines containing Lr9, Lr24 and Lr26[J]. Canadian Jour-nal of Plant Pathology, 38(1): 91-102. [23] Song L, Cui L, Li H, et al.2025. Wheat leaf rust effector Pt48115 localized in the chloroplasts and suppressed wheat immunity[J]. Journal of Fungi, 11: 80. [24] Sperschneider J, Dodds P N, Gardiner D M.2018. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0[J]. Molecular Plant Pathology, 19(9): 2094-2110. [25] Stergiopoulos I, de Wit P J.2009. Fungal effector proteins[J]. Annual Review of Phytopathology, 47(1): 233-263. [26] Wang F, Shen S S, Cui Z C, et al.2023. Puccinia triticina ef-fector protein Pt_21 interacts with wheat thaumatin-like protein TaTLP1 to inhibit its antifungal activity and sup-press wheat apoplast immunity[J]. Crop Journal, 11(5): 1431-40. [27] Wang B X, Chang J Y, Mapuranga J, et al.2024. Effector Pt9226 from Puccinia triticina presents a virulence role in wheat line TcLr15[J]. Microorganisms, 12(8): 1723. [28] Wu J J, Gao J, Bi W S, et al.2019. Genome-wide expression profiling of genes associated with the Lr47-mediated wheat resistance to leaf rust(Puccinia triticina)[J]. Inter-national Journal of Molecular Sciences, 20(18): 4498. [29] Xu Q, Tang C L, Wang X D, et al.2019. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function[J]. Nature Communica-tions, 10(1): 5571. [30] Xu Q, Tang C, Wang L, et al.2020. Haustoria-arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici[J]. Molecular Plant Pathology, 21(1): 83-94. [31] Yin, W, Wang, Y, Chen, T, et al.2018. Functional evaluation of the signal peptides of secreted proteins[J]. Bio-Proto-col Journal, 8(9): e2839. [32] Zhang Y, Wei J, Qi Y, et al.2020. Predicating the effector pro-teins secreted by Puccinia triticina through transcriptom-ic analysis and multiple prediction approaches[J]. Fron-tiers in Microbiology, 11: 538032. [33] Zhao M, Wang J, Ji S, et al.2018. Candidate effector Pst_8713 impairs the plant immunity and contributes to viru-lence of Puccinia striiformis f. sp. tritici[J]. Frontiers in Plant Science, 9: 1294. [34] Zhou H X, Xia X C, He Z H, et al.2013. Molecular mapping of leaf rust resistance gene LrNJ97 in Chinese wheat line Neijiang977671[J]. Theoretical and Applied Genet-ics, 126(8): 2141-2147. |
|
|
|