|
|
Identification of the CBF Gene Family in Phaseolus vulgaris and Its Expression Analysis Under Low Temperature Stress |
LONG Zi-Xuan, LIU Wei, WANG Yu-Ping*, ZHANG Xiao-Xu, LUO Xin-Rui, WANG Zhi |
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract CBF (C-repeat binding factor) is a key transcription factor that can be rapidly induced and plays an important role in the response of plants to chilling stress. In this study, bioinformatics analysis of the common bean (Phaseolus vulgaris) CBF gene family and the expression of common bean CBF genes under chilling stress were examined using transcriptome data (RNA-seq) and qRT-PCR. The results showed that a total of 7 PvCBFs were identified in common bean, unevenly distributed on 5 chromosomes; phylogenetic analysis revealed that common bean CBF members were classified into 4 subgroups (Ⅰ~Ⅳ), which were identical to the results of gene structure and conserved motif analysis; covariance analysis revealed that there were 5 pairs of CBF gene families between common bean and Arabidopsis thaliana. The promoter analysis revealed that PvCBFs contained a variety of cis-elements involved in plant growth and development, hormone and stress response. The qRT-PCR results showed that 3 PvCBFs were significantly up-regulated under chilling stress (P<0.05). This study can provide a reference for subsequent study of the chilling tolerance function of PvCBF genes.
|
Received: 08 August 2022
|
|
Corresponding Authors:
*wangyp@gsau.edu.cn
|
|
|
|
[1] 葛歌, 金新开, 沈辉, 等. 2017. 拟南芥AtCBF1~3基因提高番茄耐寒性研究[J]. 西南大学学报(自然科学版), 39(09): 34-41. (Ge G, Jin X K, Shen H, et al.2017. Arabidopsis AtCBF1~3 genes can enhance the cold tolerance of tomato[J]. Joumal of Southwest University (Natural Science Edition), 39(09): 34-41.) [2] 郭惠明, 李召春, 张晗, 等. 2011. 棉花CBF基因的克隆及其转基因烟草的抗寒性分析[J]. 作物学报, 37(02): 286-293. (Guo H M, Li Z C, Zhang H, et al.2011. Cloning of cotton CBF gene and its cold tolerance expression in transgenic tobacco[J]. Acta Agronomica Sinica, 37(02): 286-293.) [3] 郭惠明, 李召春, 张晗, 等. 2011. 棉花CBF基因的克隆及其转基因烟草的抗寒性分析[J]. 作物学报, 37(02): 286-293. (Guo H M, Li Z C, Zhang H, et al.2011. Cloning of cotton CBF gene and its cold tolerance expression in transgenic tobacco[J]. Acta Agronomica Sinica, 37(02): 286-293.) [4] 黄祥, 楚光明, 程锦涛, 等. 2022. 蓝星睡莲CBF基因家族的全基因组鉴定与分析[J]. 分子植物育种, 20(4): 1348-1357. (Huang X, Chu G M, Cheng J T, et al.2021. Genome-wide identification and analysis of CBF gene family in Nymphaea colorata[J]. Molecular Plant Breeding, 20(4): 1348-1357.) [5] 金新开, 李小寒, 沈辉, 等. 2018. 拟南芥耐寒基因AtCOR15a在番茄中异源表达增强其耐寒性[J]. 园艺学报, 45(07): 1283-1295. (Jin X K, Li XH, Shen H, et al.2018. Ectopic expression of AtCOR15a improves cold tolerance in Solanum lycopersicum[J]. Acta Horticulturae Sinica, 45(07): 1283-1295.) [6] 王玉萍, 郜春晓, 王盛祥, 等. 2020. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 29(8): 116-125. (Wang Y P, Gao C X, Wang S X, et al.2020. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of common bean leaves under chilling and weak light stress[J]. Acta Prataculturae Sinica, 29(8): 116-125.) [7] 叶正, 高崇伦, Zakaria Gagoshidze, 等. 2021. 辣椒低温响应转录因子CBF全基因组鉴定与分析[J]. 分子植物育种, 19(15): 4903-4910. (Ye Z, Gao C L, Zakaria G, et al.2021. Genome-wide identification and analysis of the cold responsive transcription factor (CBF) in Capsicum chinense[J]. Molecular Plant Breeding, 19(15): 4903-4910.) [8] 周至铭, 杨佳宝, 张程, 等. 2022. 向日葵LACS家族鉴定及响应非生物胁迫表达分析[J]. 园艺学报, 49(02): 352-364. (Zhou Z M, Yang J B, Zhang C, et al.2022. Genome-wide identification and expression analyses of long-chain Acyl-CoA synthetases under abiotic stresses in Helianthus annuus[J]. Acta Horticulturae Sinica, 49(02): 352-364.) [9] Büyük İ, İlhan E, Şener D, et al.2019. Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress[J]. Molecular Biology Reports, 46(3): 2721-2732. [10] Barker M S, Baute G J, Liu S L.2012. Duplications and turnover in plant genomes[J]. Plant Genome Diversity, 1:155-169. [11] Chen C, Chen H, Zhang Y, et al.2020. TB tools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [12] Dong S, Wang W, Bo K, et al.2019. Quantitative trait locimapping and candidate gene analysis of low temperature tolerance in cucumber seedlings[J]. Frontiers in Plant Science, 10: 1620 [13] Dubouzet J G, Sakuma Y, Ito Y, et al.2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression[J]. The Plant Journal: For Cell and Molecular Biology, 33(4): 751-763. [14] Gilmour S J, Zarka D G, Stockinger E J, et al.2010. Chilling regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. Plant Journal, 16: 433-442. [15] Giri J, Dansana P K, Kothari K S, et al.2013. SAPs as novel regulators of abiotic stress response in plants[J]. Bioessays, 35(7): 639-648. [16] Hurst L D.2002. The Ka/Ks ratio: Diagnosing the form of sequence evolution[J]. Trends in Genetics, 18(9): 486-487. [17] Jaglo K R, Kleff S, Amundsen K L, et al.2001. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are con served in Brassica napus and other plant species[J]. Plant physiology, 127(3): 910-917. [18] Jaglo K R, Gilmour S J, Zarka D G, et al.1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 280(5360): 104-106. [19] Kidokoro S, Watanabe K, Ohori T, et al.2015. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. The Plant Journal: For Cell and Molecular Biology, 81(3): 505-518. [20] Lescot M, Déhais P, Thijs G, et al.2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 30(1): 325-327. [21] Morran S, Eini O, Pyvovarenko T, et al.2011. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal, 9: 230-249. [22] Pino M T, Skinner J S, Jeknić Z, et al.2008. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato[J]. Plant Cell and Environment, 31(4): 393-406. [23] Schmutz J, McClean P E, Mamidi S, et al.2014. A reference genome for common bean and genome-wide analysis of dual domestications[J]. Nature Genetics, 46(7): 707-713. [24] Tani T, Sobajima H, Okada K, et al.2008. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J]. Planta, 227(3): 517-526. [25] Tognolli M, Penel C, Greppin H, et al.2002. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 288(1-2): 129-138. [26] Walther D, Brunnemann R, Selbig J.2007. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana[J]. PLOS Genetics, 3(2): e11. [27] Wang P J, Chen X J, Guo Y C, et al.2019. Identification of CBF transcription factors in tea plants and a survey of potential CBF target genes under chilling[J]. International Journal of Molecular Science, 20(20): 5137. [28] Xiao H G, Siddiqua M S, Nassuth A.2010. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid[J]. Plant Cell and Environment, 29: 1410-1421. [29] Yadav C B, Bonthala V S, Muthamilarasan M.2015. Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database[J]. DNA Research, 22: 79-90. [30] Yang J S, Wang R, Meng J J, et al.2010. Overexpression of Arabidopsis CBF1 gene in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance[J]. Journal of Plant Physiology, 167(7): 534-539. [31] Ying Y, Ma Q P, Zhu Z X, et al.2016. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress[J]. Plant Growth Regulation, 80: 335-343. [32] Zhang H, Wei C, Yang X, et al.2017. Genome-wide identification and expression analysis of calcium dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.)[J]. PLOS ONE, 12(4): e0176352. |
|
|
|