|
|
|
| Research Progress on Histone Acetylation Modification Regulating Plant Stress Resistance |
| GONG An-Di, BAO Fei* |
| School of Landscape Architecture/National Engineering Research Center for Floriculture/Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China |
|
|
|
|
Abstract Histone acetylation modification, a dynamic, reversible epigenetic regulation method, plays an important role in plant stress resistance. This modification mainly changes the chromatin structure through the coordinated regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs), which affects gene transcription activity. This review summarized the mechanisms of HATs and HDACs to various abiotic and biotic stresses, including drought, heat, cold, salt and biotic stress. First of all, the expression of HATs and HDACs genes is generally induced by stress, causing changes in the level of intracellular histone acetylation and regulating plants' ability to adapt to stress; Next, HATs and HDACs usually interact with transcription factors to directionally change histone modifications in the region where the corresponding target gene is located, thereby regulating gene expression and responding to stress; Besides, in addition to acting on histones, HATs and HDACs can also change the acetylation modification of non-histones such as transcription factors and enzymes, thereby affecting their function or activity, and ultimately affecting plant stress resistance. This article summarized the research progress of HATs and HDACs in plant stress resistance, with the aim of providing theoretical support for plant stress-resistant breeding.
|
|
Received: 16 June 2025
|
|
|
|
Corresponding Authors:
* baofei@bjfu.edu.cn
|
|
|
|
[1] 郝雯倩, 蔡兴菁, 杨海东, 等. 2025. 不同类型组蛋白修饰在水稻响应非生物胁迫中的研究进展[J]. 中国水稻科学, 39(05): 575-585. (Hao W J, Cai X Q, Yang H D, et al.2025. Advance in response to abiotic stress about different types of histone modifications in rice[J]. Chinese Journal of Rice Science, 39(05): 575-585.) [2] 孔凡定, 程震龙, 孙野青. 2008. 植物组蛋白密码研究进展[J]. 生物学杂志,25(01): 9-11+25. (Kong F D, Cheng Z L, Sun Y Q.2008. Advances on the study of plants histone code[J]. Journal of Biology, 25(01): 9-11+25.) [3] 王立超, 李欢, 盛若成, 等. 2024. 乙酰化修饰在植物病原物致病过程中的作用[J]. 生物技术通报, 40(05): 1-12. (Wang L C, Li H, Sheng R C, et al.2024. Role of acetylation in the pathogenic process of plant pathogens[J]. Biotechnology Bulletin, 40(05): 1-12.) [4] Aladjem M I.2007. Dynamic regulation of DNA replication patterns in metazoans[J]. Nature Reviews Genetics, 8(8): 588-600. [5] Allfrey V G, Mirsky R, Faulknera E.1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J]. Proceedings of the National Academy of Sciences of the USA, 51(5): 786-794. [6] Aquea F, Timmermann T, Arce-Johnson P.2010. Analysis of histone acetyltransferase and deacetylase families of Vitis vinifera[J]. Plant Physiology & Biochemistry, 48(2-3): 194-199. [7] Atkin O K, Loveys B R, Atkinson L J, et al.2006. Phenotypic plasticity and growth temperature: Understanding interspecific variability[J]. Journal of Experimental Botany, 57(2): 267-281. [8] Bannister A J, Kouzarides T.2011. Abstract of article: Regulation of chromatin by histone modifications[J]. Cell Research, 21(1): 381-395. [9] Berger S L.2002. Histone modifications in transcriptional regulation[J]. Current Opinion in Genetics & Development, 12(2): 142-148. [10] Berger S L, Kouzarides T, Shiekhattar R, et al.2009. An operational definition of epigenetics[J]. Genes & Development, 23(7): 781-783. [11] Bertrand C, Bergounioux C, Domenichini S, et al.2003. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway[J]. Journal of Biological Chemistry, 278(30): 28246-28251. [12] Bloch K, Borek E.1946. Biological acetylation of natural amino acids[J]. Journal of Biological Chemistry, 164(1): 483. [13] Cai J, Zhang Y, He R, et al.2024. LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis[J]. EMBO Reports, 25(2): 17. [14] Chen L T, Luo M, Wang Y Y, et al.2010. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response[J]. Journal of Experimental Botany, 61(12): 3345-3353. [15] Chen Z T, Xu Q T, Wang J, et al.2024. A histone deacetylase confers plant tolerance to heat stress by controlling protein lysine deacetylation and stress granule formation in rice[J]. Cell Reports, 43(9): 114642. [16] Chinnusamy V, Zhu J H, Zhu J K.2010. Gene regulation during cold acclimation in plants[J]. Physiologia Plantarum, 126(1): 52-61. [17] Choi S M, Song H R, Han S K, et al.2012. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis[J]. Plant Journal, 71(1): 135-146. [18] Chu W, Chang S M, Lin J C, et al.2024. Methyltransferase TaSAMT1 mediates wheat freezing tolerance by integrating brassinosteroid and salicylic acid signaling[J]. Plant Cell, 36(7): 2607-2628. [19] Deng W W, Liu C Y, Pei Y X, et al.2007. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis[J]. Plant Physiology, 143(4): 1660-1668. [20] Ding B, Bellizzi M D, Ning Y S, et al.2012. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice[J]. Plant Cell, 24(9): 3783-3794. [21] Earley K, Lawrence R J, Pontes O, et al.2006. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance[J]. Genes & Development, 20(10): 1283-1293. [22] Eom S H, Hyun T K.2018. Histone acetyltransferases (HATs) in Chinese cabbage: Insights from histone H3 acetylation and expression profiling of HATs in response to abiotic stresses[J]. Journal of the American Society for Horticultural Science, 143(4): 296. [23] Farooq M, Wahid A, Kobayashi N, et al.2009. Plant drought stress: Effects, mechanisms and management[J]. Agronomy for Sustainable Development, 29(1): 185-212. [24] Feng P, Sun X, Liu X, et al.2022. Epigenetic regulation of plant tolerance to salt stress by histone acetyltransferase GsMYST1 from wild soybean[J]. Frontiers in Plant Science, 36(7): 2607-2628. [25] Fischle W, Wang Y M, Allis C D.2003. Histone and chromatin cross-talk[J]. Current Opinion in Cell Biology, 15(2): 172-183. [26] Gandhivel V H S, Sotelo-Parrilla P, Raju S, et al.2025. An Oryza-specific histone H4 variant predisposes H4 lysine 5 acetylation to modulate salt stress responses[J]. Nature Plants, 11(4): 790-807. [27] Grunstein M.1997. Histone acetylation in chromatin structure and transcription[J]. Nature, 389(6649): 349-352. [28] Gu D C, Wu S H, Yu Z M, et al.2022. Involvement of histone deacetylase CsHDA2 in regulating (E)-nerolidol formation in tea (Camellia sinensis) exposed to tea green leafhopper infestation[J]. Horticulture Research, 28(9): uhac158. [29] Gupta A, Rico-Medina A, Caño-Delgado A I.2020. The physiology of plant responses to drought[J]. Science, 368(6488): 266-269. [30] Hollender C, Liu Z C.2008. Histone deacetylase genes in Arabidopsis development[J]. Journal of Integrative Plant Biology, 50(7): 875-885. [31] Hong G L, Pil J S.2019. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis[J]. Nature Communications, 10(1): 1713. [32] Hou J, Ren R, Xiao H, et al.2021. Characteristic and evolution of HAT and HDAC genes in Gramineae genomes and their expression analysis under diverse stress in Oryza sativa[J]. Planta, 253(3): 72. [33] Hu Y F, Lu Y, Zhao Y, et al.2019. Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress[J]. Frontiers in Plant Science, 10(10): 1236. [34] Huang G T, Ma S L, Bai L P, et al.2012. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 39(2): 969-987. [35] Huang L, Sun Q, Qin F, et al.2007. Down‐regulation of a SILENT INFORMATION REGULATOR2‐related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice[J]. Plant Physiology, 144(3): 1508-1519. [36] Hwarari D, Guan Y L, Ahmad B, et al.2022. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress[J]. International Journal of Molecular Sciences, 23(3): 1549. [37] Jenuwein T.2001. Translating the histone code[J]. Science, 293(5532): 1074-1080. [38] Kaldis A, Tsementzi D, Tanriverdi O, et al.2011. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses[J]. Planta, 233(4): 749-762. [39] Kawashima T, Berger F.2014. Epigenetic reprogramming in plant sexual reproduction[J]. Nature Reviews Genetics, 15(9): 613-624. [40] Kim S, Piquerez S J M, S R-P J, et al.2020. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes[J]. Nucleic Acids Research, 48(47): 5953-5966. [41] Kong L, Qiu X F, Kang J G, et al.2017. A phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection[J]. Current Biology, 27(7): 981-991. [42] Kong X G, Chen Y, Li H H, et al.2024. Dissociation of transcription factor MYB94 and histone deacetylases HDA907/908 alleviates oxidative damage in poplar[J]. Plant Physiology, 196(1): 181-194. [43] Kornet N, Scheres B.2009. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis[J]. Plant Cell, 21(4): 1070-1079. [44] Kuo M H, Allis C D.1998. Roles of histone acetyltranferases and deacetylases in gene regulation[J]. BioEssays, 20(8), 615-626. [45] Li C, Huang L, Xu C, et al.2011a. Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice[J]. Public Library of Science One, 6(7): e21789. [46] Li C, Xu J, Li J, et al.2014. Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway[J]. Plant Cell Physiology, 55(2):426-435. [47] Li W, Liu H, Cheng Z J, et al.2011b. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. Public Library of Science Genetics, 7(8): e1002243. [48] Li W J, Deng M T, Wang S C, et al.2023. Histone deacetylase 6 interaction with abscisic acid-insensitive 5 decreases apple drought tolerance[J]. Plant Physiology, 193(4): 2711-2733. [49] Li Y P, Ye W, Wang M, et al.2009. Climate change and drought: A risk assessment of crop-yield impacts[J]. Climate Research, 39(1): 31-46. [50] Liu K, Chen J J, Sun S, et al.2023a. Histone deacetylase OsHDA706 increases salt tolerance via H4K5/K8 deacetylation of OsPP2C49 in rice[J]. Journal of Integrative Plant Biology, 65(6): 1394-1407. [51] Liu N, Li J X, Yuan D Y, et al.2025. Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis[J]. European Molecular Biology Organization Journal, 44(12): 3521-3546. [52] Liu R, Li X Q, Chen W, et al.2018. Structure and mechanism of plant histone mark readers[J]. Science China-Life Sciences, 61(2): 170-177. [53] Liu S R, He M L, Lin X Y, et al.2023b. Epigenetic regulation of photoperiodic flowering in plants[J]. Plant Genome, 16(4): 11. [54] Liu X, Luo M, Zhang W.et al.2012. Histone acetyltransferases in rice (Oryza sativa L.): Phylogenetic analysis, subcellular localization and expression[J]. BMC Plant Biology, 12: 145. [55] Liu X C, Yang S G, Zhao M L, et al.2014. Transcriptional repression by histone deacetylases in plants[J]. Molecular Plant, 7(5): 764-772. [56] Liu Y X, Yang H, Liu X C, et al.2021. Protein acetylation: A novel modus of obesity regulation[J]. Journal of Molecular Medicine, 99(9): 1221-1235. [57] Lu X F, Hyun T K.2021. The role of epigenetic modifications in plant responses to stress[J]. Botanica Serbica, 45(1): 3-12. [58] Luo M, Liu X C, Singh P, et al.2012. Chromatin modifications and remodeling in plant abiotic stress responses[J]. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1819(2): 129-136. [59] Maeshima K, Imai R, Tamura S, et al.2014. Chromatin as dynamic 10-nm fibers[J]. Chromosoma, 123(3): 225-237. [60] Mao Y, Pavangadkar K A, Thomashow M F, et al.2006. Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1[J]. Biochimica et Biophysica Acta, 1759(1-2): 69-79. [61] Mayer K S, Chen X S, Sanders D, et al.2019. HDA9-PWR-HOS15 is a core histone deacetylase complex regulating transcription and development[J]. Plant Physiology, 180(1): 342-355. [62] McClung C R, Lou P, Hermand V, et al.2016. The importance of ambient temperature to growth and the induction of flowering[J]. Frontiers in Plant Science, 7(7): 1266. [63] Mikkelsen T S, Ku M, Jaffe D B, et al.2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells[J]. Nature, 448(139): 553-560. [64] Millar C B, Michael G.2006. Genome-wide patterns of histone modifications in yeast[J]. Nature Reviews Molecular Cell Biology, 7(9): 657-666. [65] Narita T, Weinert B T, Choudhary C.2019. Functions and mechanisms of non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 20(3): 156-174. [66] Pan Q W, Guo S P, Ding J, et al.2024. Dynamic histone modification signatures coordinate developmental programs in strawberry fruit ripening[J]. Horticulture Research, 11(8): 15-25. [67] Pandey R, Müller A, Napoli C A, et al. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J]. Nucleic Acids Research, 30(23): 5036-5055. [68] Pogna E A, Clayton A L, Mahadevan L C.2010. Signalling to chromatin through post-translational modifications of HMGN[J]. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1799(1-2): 93-100. [69] Ritu P, Andreas M, Napoli C A, et al.2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J]. Nucleic Acids Research, 30(23): 5036-5055. [70] Ruijter A J M D, Gennip A H V, Caron H N, et al.2003. Histone deacetylases (HDACs): Dharacterization of the classical HDAC family[J]. Biochemical Journal, 370(3): 737-749. [71] Saha R N, Pahan K.2006. HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis[J]. Cell Death & Differentiation, 13(4): 539-550. [72] Samach A, Wigge P A.2005. Ambient temperature perception in plants[J]. Current Opinion in Plant Biology, 8(5): 483-486. [73] Sapountzi V, Côté J.2011. MYST-family histone acetyltransferases: Beyond chromatin[J]. Cellular and Molecular Life Sciences, 68(7): 1147-56. [74] Servet C, Silva N, Conde E, et al.2010. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis[J]. Molecular Plant, 3(4): 670-677. [75] Shahbazian M D, Grunstein M.2007. Functions of site-specific histone acetylation and deacetylation[J]. Annual Review of Biochemistry, 76(1): 75-100. [76] Shen Y, Lei T T, Cui X Y, et al.2019. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature[J]. Plant Journal, 100(5): 991-1006. [77] Shi Y T, Ding Y L, Yang S H.2018. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 23(7): 623-637. [78] Shilpa, Thakur R, Prasad P.2024. Epigenetic regulation of abiotic stress responses in plants[J]. Biochimica Et Biophysica Acta-General Subjects, 62(5): 563-580. [79] Shvedunova M, Akhtar A.2022. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 23(5): 329-349. [80] Song G Y, Justin W W.2016. Dynamic protein acetylation in plant-pathogen interactions[J]. Frontiers in Plant Science. 7: 421. [81] Song N, Lin J C, Liu X B, et al.2022. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat[J]. New Phytologist, 236(2): 590-607. [82] Sridha S, Wu K Q.2006. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis[J]. The Plant Journal, 46(1): 124-133. [83] Sterner D E, Berger S L.2000. Acetylation of histones and transcription-related factors[J]. Microbiology and Molecular Biology Reviews, 64(2): 435-459. [84] Su J X, Tian Y K, Hao S Y, et al.2025. The AtHDA6-AtSK2 module promotes cold tolerance by enhancing shikimate metabolism and antioxidant activity[J]. The Plant Journal, 122(3): e70197. [85] Tian L, Chen Z J.2001. Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development[J]. Proceedings of the National Academy of Sciences of the USA, 98(1): 200-205. [86] Verdin E, Ott M.2015. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond[J]. Nature Reviews Molecular Cell Biology, 16(4): 258-264. [87] Vlachonasios K E, Thomashow M F, Triezenberg S J.2003. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression[J]. Plant Cell, 15(3): 626-638. [88] Wei H, Wang X L, He Y Q, et al.2021. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. Journal of the European Molecular Biology Organization, 40(3): e105086. [89] Wu K Q, Zhang L, Zhou C H, et al.2008. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis[J]. Journal of Experimental Botany, 59(2): 225-234. [90] Wurtele H, Tsao S, Lépine G, et al.2010. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy[J]. Nature Medicine, 16(7): 774. [91] Yang F, Miao L F.2010. Adaptive responses to progressive drought stress in two poplar species originating from different altitudes[J]. Silva Fennica, 44(1): 23-37. [92] Yuan L Y, Liu X C, Luo M, et al.2013. Involvement of histone modifications in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 55(10): 892-901. [93] Zhang N, Hu J C, Liu Z S, et al.2024. Sir2-mediated cytoplasmic deacetylation facilitates pathogenic fungi infection in host plants[J]. New Phytologist, 241(4): 15. [94] Zhang Y M, Song L M, Liang W X, et al.2016. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat[J]. Scientific Reports, 6(6): 21069. [95] Zhang Y Z, Yin B, Zhang J X, et al.2019. Histone deacetylase hdt1 is involved in stem vascular development in Arabidopsis[J]. International Journal of Molecular Sciences, 20(14): 3452. [96] Zhao H P, Ge Z Y, Zhou M M, et al.2023. Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava[J]. Plant Cell and Environment, 46(2): 635-649. [97] Zhao T, Zhan Z, Jiang D.2019. Histone modifications and their regulatory roles in plant development and environmental memory[J]. Journal of Genetics and Genomics, 46(10): 467-476. [98] Zheng J Y, Chun W W, Chang J J, et al.2020. Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response[J]. Molecular Plant, 13(4): 14. [99] Zheng M, Lin J C, Liu X B.2021. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat[J]. Plant Physiology, 186(4): 1951-1969. [100] Zheng Y, Ding Y, Sun X, et al.2016. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis[J]. Journal of Experimental Botany, 67(6): 1703-1713. [101] Zhou C H, Zhang L, Duan J, et al.2005. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis[J]. Plant Cell, 17(4): 1196-1204. [102] Zhou D X, Hu Y F.2010. Regulatory function of histone modifications in controlling rice gene expression and plant growth[J]. Rice, 3(2-3): 103-111. [103] Zhu J K.2002. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 53(1): 247-273. [104] Zhu Z Q, An F Y, Feng Y, et al.2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 108(30): 12539-12544. |
|
|
|