|
|
Identification and Expression Specificity Analysis of the MYC Gene Family in Licorice (Glycyrrhiza sp.) |
MA Hong-Xia, OUYANG Xu, CHENG Lin-Yuan, SUN Yu, YAO Hua*, SHEN Hai-Tao* |
1 College of Life Sciences/Key Laboratory of Phytomedicinal Resources, Ministry of Education, Xinjiang/Key Laboratory of Oasis Town and Mountain-Basin System Ecology Corps, Shihezi University, Shihezi 832003, China; 2 Institute of Pharmaceutical Research, Xinjiang Uygur Autonomous Region, Urumqi 830004, China |
|
|
Abstract Jasmonic acid plays an important role in regulating active ingredient synthesis in response to abiotic stress in licorice (Glycyrrhiza sp.). MYC is a key transcription factor of the jasmonic acid signaling pathway, which is involved in regulating the expression of downstream genes in response to jasmonic acid in plants. In this study, bioinformatics methods were used to analyze the MYC gene family of licorice and to analyze its expression pattern in different tissue. At the same time, the correlation between the expression of MYC genes and the changes in the jasmonic acid content of licorice under drought stress was also analyzed to understand the key MYC genes involved in the response to abiotic stress in licorice. The results showed that there were a total of 28 MYC genes in the 3 licorice species, including 10 in G. uralensis, and 9 each in G. glabra and G. inflata. Based on the phylogenetic relationships, they were classified into 4 subfamilies, with similar gene structures and conserved motifs in the same subfamily. The MYC genes with high homology in 3 species of G. glabra were at similar sites on the chromosome and had similar expression characteristics, GuMYC2b, GiMYC2 and GgMYC2 were highly expressed in the whole plant of licorice, GubHLH14b, GibHLH14b and GgbHLH14b were mainly expressed in the root. 10% PEG6000 simulated drought stress treatment of G. uralensis showed that the changes in the expression levels of GuMYC2b, GubHLH14a and GubHLH13a genes in the underground parts had a similar trend of changes with the content of jasmonic acid and were induced to be expressed by exogenous spraying of jasmonic acid, and the drought stress also promoted the accumulation of jasmonic acid content. The results suggested that these genes may be the main MYC genes regulated by jasmonic acid in response to abiotic stress. The present study provides a research basis for the next step in the breeding of stress-resistant licorice and the study of the mechanism of stress resistance.
|
Received: 13 January 2025
|
|
Corresponding Authors:
*13999416185@163.com; 1804833273@163.com
|
|
|
|
[1] 毕权, 姚华, 何大俊, 等. 2021. 苗期乌拉尔甘草GuHMGR基因表达特性与甘草酸合成和积累关系的研究[J]. 植物生理学报, 57(03): 569-578. (Bi Q, Yao H, He D J, et al.2021. Relationship between expression characteristics of GuHMGR gene and glycyrrhizic acid synthesis and accumulation in seedlings of Glycyrrhiza uralensis[J]. Journal of Plant Physiology, 57(03): 569-578.) [2] 段龙飞, 李文燕, 黄文洁, 等. 2024. 植物转录因子MYC基因家族的生物信息学分析[J]. 分子植物育种: 1-14. (Duan L F, Li W Y, Huang W J, et al.2024. Bioinformatics analysis of plant transcription factor MYC gene family[J]. Molecular Plant Breeding: 1-14.) [3] 郝立冬, 郭海滨, 李明, 等. 2021. 玉米MYC基因家族的结构特点和表达模式分析[J]. 基因组学与应用生物学, 40(4): 1748-1753. (Hao L D, Guo H B, Li M, et al.2021. Analysis of structural characteristics and expression patterns of maize MYC gene family[J]. Genomics and Applied Biology, 40(4): 1748-1753.) [4] 何梦媛, 姚华, 李国治, 等. 2022. 甘草CHS基因家族鉴定、表达特性分析及其与甘草查尔酮A积累的关系研究[J]. 植物生理学报, 58(01): 141-154. (He M Y, Yao H, Li G Z, et al.2022. Identification of CHS gene family and analysis of its expression characteristics in relation to the accumulation of licochalcone A in Chinese licorice (Glycyrrhiza uralensis))[J]. Journal of Plant Physiology, 58(01): 141-154.) [5] 李昂, 吴应珍, 马明广, 等. 2016. 西北地区种植甘草对土壤次生盐渍化的影响[J]. 水土保持通报, 36(6): 47-52. (Li A, Wu Y Z, Ma M G, et al.2016. Effects of planting licorice on soil secondary salinization in northwest China[J].Soil and Water Conservation Bulletin, 36(6): 47-52.) [6] 李海华, 青梅, 于娟, 等. 2015. 甘草的研究进展[J]. 内蒙古医科大学学报, 37(2): 199-204. (Li H H, Qing M, Yu J, et al.2015. Research progress of licorice[J]. Journal of Inner Mongolia Medical University, 37(2): 199-204.) [7] 梁晓薇, 杨全, 李丹, 等. 2017. 茉莉酸甲酯对甘草根次生代谢的调控[J]. 广东农业科学, 44(6): 57-62. (Liang, X W,Yang Q, Li D, et al.2017. Regulation of methyl jasmonate on secondary metabolism of licorice roots[J]. Guangdong Agricultural Sciences, 44(6): 57-62.) [8] 刘刚, 吴燕, 刘育辰, 等. 2021. 乌拉尔甘草化学成分研究进展[J]. 中国现代中药, 23(11): 2006-2016. (Liu G, Wu Y, Liu Y C, et al.2021. Research progress on chemical constituents of Glycyrrhiza uralensis[J]. Modern Chinese Medicine, 23(11): 2006-2016.) [9] 罗子宸, 张雯, 杨瑞, 等. 2021. 甘草“调和诸药”生物药剂学机制的研究进展[J]. 中草药, 52(1): 267-277. (Luo Z C, Zhang W, Yang R, et al.2021. Research progress on the biopharmaceutics mechanism of licorice 'reconciling various herbs'[J]. Chinese Herbal Medicine, 52(1): 267-277.) [10] 马少杰, 郭海洋, 尹江, 等. 2024. 毛果杨MYC基因家族生物信息学及转录组表达分析[J]. 分子植物育种: 1-18. (Ma S J, Guo H Y, Yin J, et al.2024. Bioinformatics and transcriptome expression analysis of MYC gene family in Populus trichocarpa[J]. Molecular Plant Breeding: 1-18.) [11] 曲雪洁, 王晨, 刘长利. 2021. 近十年甘草栽培研究进展[J]. 天津中医药大学学报, 40(1): 5-14. (Qu X J, Wang C, Liu C L.2021. Research progress of licorice cultivation in recent ten years[J]. Journal of Tianjin University of Traditional Chinese Medicine, 40(1): 5-14.) [12] 石娜娜, 姚华, 高转转, 等. 2023. 甘草JAZ基因家族的鉴定及其在干旱胁迫下的表达分析[J].中国生物化学与分子生物学, 39(12):1776-1788. (Shi N N Yao H, Gao Z Z, et al.2023. Identification of the licorice JAZ gene family and its expression under abiotic stress[J]. Chinese Journal of Biochemistry and Molecular Biology,, 39(12): 1776-1788.) [13] 孙琛. 2020. 甘草的化学成分研究进展[J]. 科技资讯, 18(2): 64-65. (Sun S.2020. Research progress on chemical constituents of licorice[J]. Science and Technology Information, 18(2): 64-65.) [14] 王瑜桑, 夏快飞, 张明永, 等. 2024. 基于转录组测序的广藿香MYC基因家族鉴定与分析[J]. 分子植物育种: 1-10. (Wang Y S, Xia K F, Zhang M Y, et al.2024. Identification and analysis of MYC gene family in Pogostemon cablin based on transcriptome sequencing[J]. Molecular Plant Breeding: 1-10.) [15] 肖先, 李春燕, 刘晓龙, 等. 2023. 甘草的主要化学成分及药理作用研究进展[J]. 新乡医学院学报, 40(3): 280-285. (Xiao X, Li C Y, Liu X L, et al, 2023. Research progress on the main chemical constituents and pharmacological effects of licorice[J]. Journal of Xinxiang Medical University, 40(3): 280-285.) [16] 姚攀锋, 吕兵兵, 李琪, 等. 2019. 苦荞转录因子基因FtMYC的克隆及其表达与花青素积累的相关性分析[J]. 四川农业大学学报, 37(1): 8-14+33. (Yao P F, Lv B B, Li Q, et al.2019. Cloning of transcription factor gene FtMYC andanalyzing the correlation between its expression and anthocyanin accumulation[J].Journal of Sichuan Agricultural University, 37 (1): 8-14 + 33.) [17] 张斌. 2024. 大豆转录因子GmMYC2L参与植物耐盐性调控[J]. 江苏农业学报, 40(7): 1182-1190. (Zhang B.2024. Soybean transcription factor GmMYC2L is involved in the regulation of plant salt tolerance[J]. Jiang su Agriculture Journal, 40(7): 1182-1190 .) [18] 张乐欢, 邹昌玉, 朱天翔, 等. 2024. 茉莉酸在植物抗逆性中的研究进展[J]. 生物工程学报, 40(1): 15-34. (Zhang L H, Zou C Y, Zhu T X, et al.2024. Research progress of jasmonic acid in plant stress resistance[J]. Journal of Biological Engineering, 40(1): 15-34.) [19] 郑嘉瑞, 杨晓燕, 叶家保, 等. 2023. MYC2转录因子在植物中的功能研究进展[J]. 园艺学报, 50(4): 896-908. (Zheng J R, Yang X Y, Ye J B, et al.2023. Functional research progress of MYC2 transcription factors in plants[J]. Horticultural Journal, 50 (4): 896-908). [20] 郑玉成, 谷梦雅, 毕婉君, 等. 2021. 茶树MYC转录因子家族的全基因组鉴定及表达分析[J]. 福建农业学报, 36(9): 1007-1016. (Zheng Y C, Gu M Y, Bi W J, et al.2021. Genome-wide identification and expression analysis of the MYC transcription factor family in Camellia sinensis[J]. Fujian Journal of Agriculture, 36(9) : 1007-1016.) [21] 邹文会, 苏亚春, 任永娟, 等. 2022. 植物MYC转录因子:结构特点、作用机制和功能调控[J]. 农业生物技术学报, 30(6): 1186-1201. (Zou W H, Su Y C, Ren Y, et al.2022. Plant MYC transcription factors: Structural characteristics, mechanism of action and functional regulation[J]. Journal of Agricultural Biotechnology, 30(6): 1186-1201.) [22] Abe H, Urao T, Ito T, et al.2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell, 15(1): 63-78. [23] Bai J F, Wang Y K, Guo L P, et al.2019. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.)[J]. BioMed Central Genomics, 20(1): 1032. [24] Bailey P C, Martin C, Toledo-Ortiz G, et al.2003. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. The Plant Cell, 15(11): 2497-2502. [25] Carretero-Paulet L, Galstyan A, Roig-Villanova I, et al.2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiology, 153(3): 1398-1412. [26] Chen S, Zhao H, Luo T, et al.2019. Characteristics and expression pattern of MYC genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon[J]. Plants (Basel, Switzerland), 8(8): 274. [27] Chico J M, Chini A, Fonseca S, et al.2008. JAZ repressors set the rhythm in jasmonate signaling[J]. Current Opinion in Plant Biology, 11(5): 486-494. [28] Chini A, Boter M, Solano R.2009. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module[J]. The Federation of European Biochemical Societies Journal, 276(17): 4682-92. [29] Chini A, Fonceca S, Fernández G, et al.2007. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 448(7154): 666-671. [30] Cole M D, Cowling V H.2008. Transcription-independent functions of MYC: Regulation of translation and DNA replication[J]. Nature Reviews. Molecular Cell Biology, 9(10): 810-815. [31] De Ollas C, Hernando B, Arbona V, et al.2013. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions[J]. Physiologia Plantarum, 147(3): 296-306. [32] Ding G, Shi Y, Xie K, Li H, et al.2025. Genome-wide identification and expression analysis of bHLH gene family revealed their potential roles in abiotic stress response, anthocyanin biosynthesis and trichome formation in Glycyrrhiza uralensis[J]. Frontiers in Plant Science, 15: 1485757. [33] Feng Z, Sun L, Dong M, et al.2023. Identification and functional characterization of CsMYCs in cucumber glandular trichome development[J]. International Journal of Molecular Sciences, 24(7): 6435. [34] Fernández-Calvo P, Chini A, Fernández-Barbero G, et al.2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses[J]. The Plant Cell, 23(2): 701-715. [35] Fu J, Wu H, Ma S, et al.2017. OsJAZ1 Attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Frontiers in Plant Science, 8: 2108. [36] Gimenez-Ibanez S, Boter M, Solano R.2015. Novel players fine-tune plant trade-offs[J]. Essays in Biochemistry, 58: 83-100. [37] Huang H, Liu B, Liu L, et al, 2017. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 68(6): 1349-1359. [38] Jeffares D C, Penkett C J, Bähler J.2008. Rapidly regulated genes are intron poor[J]. Trends in Genetics: TIG, 24(8): 375-378. [39] Katsir L, Chung H S, Koo A J, et al.2008. Jasmonate signaling: A conserved mechanism of hormone sensing[J]. Current Opinion in Plant Biology, 11(4): 428-435. [40] Khan R A, Kumar A, Abbas N.2024. A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua[J]. Physiologia Plantarum, 176(5): e14581. [41] Li X, Dung X, Jiang H, et al.2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiology, 141(4): 1167-1184. [42] Luo L, Wang Y, Qiu L, et al.2023. MYC2: A master switch for plant physiological processes and specialized metabolite synthesis[J]. International Journal of Molecular Sciences, 24(4): 3511. [43] Mohamed H I, Latif H H.2017. Improvement of drought tolerance of soybean plants by using methyl jasmonate[J]. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 23(3): 545-556. [44] Monteuuis G, Wong J J L, Bailey C G, et al.2019. The changing paradigm of intron retention: Regulation, ramifications and recipes[J]. Nucleic Acids Research, 47(22): 11497-11513. [45] Pires N, Dolan L.2010. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Molecular Biology and Evolution, 27(4): 862-874. [46] Qiu Z, Guo J, Zhu A, et al.2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and Environmental Safety, 104: 202-208. [47] Schweizer F, Fernández-Calvo P, Zander M, et al.2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior[J]. The Plant Cell, 25(8): 3117-3132. [48] Seo J S, Joo J, Kim M J, et al.2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. The Plant Journal: For Cell and Molecular Biology, 65(6): 907-921. [49] Shen Q, Lu X, Yan T, et al.2016. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua[J]. The New Phytologist, 210(4): 1269-1281. [50] Sheteiwy M S, Shao H, Qi W, et al.2021. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings[J]. Journal of the Science of Food and Agriculture, 101(5): 2027-2041. [51] Song S, Qi T, Fan M, et al.2013. The bHLH subgroup Ⅲd factors negatively regulate jasmonate-mediated plant defense and development[J]. PLOS Genetics, 9(7): e1003653. [52] Thines B, Katsir L, Melotto M, et al.2007. JAZ repressor proteins are targets of the SCF (COI1) complex during jasmonate signalling[J]. Nature, 448(7154): 661-665. [53] Uji Y, Taniguchi S, Tamaoki D, et al.2016. Overexpression of OsMYC2 results in the Up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice[J]. Plant & Cell Physiology, 57(9): 1814-1827. [54] Wang S, Wamg Y, Yamg R, et al.2023. Genome-wide identification and analysis uncovers the potential role of JAZ and MYC families in potato under abiotic stress[J]. International Journal of Molecular Sciences, 24(7): 6706. [55] Wasternack C.2007. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 100(4): 681-697. [56] Yan J, Zhang C, Gu M, et al.2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J]. The Plant Cell, 21(8): 2220-2236. [57] Yao H, Wang F, Bi Q, et al.2022. Combined analysis of pharmaceutical active ingredients and transcriptomes of Glycyrrhiza uralensis under PEG6000-Induced drought stress revealed glycyrrhizic acid and flavonoids accumulation via JA-mediated signaling[J]. Frontiers in Plant Science, 13: 920172. [58] Zhang M, Jin X, Chen Y, et al.2018. TcMYC2a, a basic Helix-Loop-Helix transcription factor, transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis[J]. Frontiers in Plant Science, 9: 863. [59] Zhou Y, Sun W, Chen J, et al.2016. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Scientific Reports, 6: 22852. |
[1] |
XIAO Lu-Chen, HE Yi-Han, LIU Chao-Zhong, ZHAO Wen-Jie, TIAN Qian-Song, LIU Han-Ye, ZHAO Cheng-Peng, ZHAO Jin, XIE Ting-Ting. Cloning and Expression Analysis of RhMAX2-like Gene in Rosa hybrida[J]. 农业生物技术学报, 2025, 33(8): 1683-1696. |
|
|
|
|