|
|
Cloning and Function Analysis of DoTAL1 Gene in Dendrobium officinale |
WANG Wei-Ying1, LIN Wen-Zhong2, ZOU Hui1, LIN Jiang-Bo1, DAI Yi-Min1,* |
1 Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou 363005, China; 2 Zhangzhou City Vocational College, Zhangzhou 363005, China |
|
|
Abstract Transaldolase (TAL) plays an important role in plant growth. In order to investigate the growth relationship between TAL gene and D. officinale, in this study screened a significantly differentially expressed gene DoTAL1 was screened from the transcriptome database of D. officinale with growth-promoting effects that inoculated with Epulorhiza in the early stage. The DoTAL1 gene was cloned and functionally studied. The results showed that the full-length cDNA sequence of the DoTAL1 gene was 1 323 bp, encoding 440 amino acids, and it was classified as a member of the triosephosphate isomerase superfamily. Phylogenetic analysis showed that the DoTAL1 protein had the closest evolutionary relationship with the homologous TAL protein of D. nobile. Subcellular localization studies showed that DoTAL1 was located in the cell membrane and chloroplasts. The height of the N. benthamiana overexpressing DoTAL1 was significantly higher than that of the control. After DoTAL1 was silenced, the growth of the Nicotiana benthamiana was slowed down. DoTAL1 was expressed in all tissues of D. officinale, with the highest expression during the vigorous growth period of stem. Its expression was upregulated after establishing symbiosis with Epulorhiza sp. in roots. The expression level of DoTAL1 was positively correlated with plant growth, indicating that DoTAL1 played a critical role in the growth and development of D. officinale. This study provides a theoretical basis for elucidating the metabolic mechanism of DoTAL1 and for the application of mycorrhizal fungi in the cultivation and molecular breeding of orchid plants.
|
Received: 25 September 2024
|
|
Corresponding Authors:
*dymtcn@163.com
|
|
|
|
[1] 高越, 郭顺星, 邢晓科. 2019. 兰科植物种子共生萌发真菌多样性及共生萌发机制研究进展[J]. 菌物学报, 38(11):1808-1825. (Gao Y, Guo SX, Xing X K, 2019. Fungal diversity and mechanisms of symbiotic germination of orchid seeds: A review[J]. Mycosystema, 38(11): 1808-1825.) [2] 郭广洋, 李义龙, 胥华伟, 等. 2024. 丹参SmCPS1和SmCYP76AH1双基因超表达转基因株系的获得及光合特性分析[J]. 农业生物技术学报, 32(9): 2033-2048. (Guo G Y, Li Y L, Xu H W, et al.2024. Obtaining and photosynthetic characteristics analysis of SmCPS1 and SmCYP76AH1 double-gene overexpressed transgenic lines of Salvia miltiorrhiza[J]. Journal of Agricultural Biotechnology, 32(9): 2033-2048.) [3] 黄骥, 王建飞, 张红生. 2004. 植物戊糖磷酸途径及其两个关键酶的研究进展[J]. 植物学通报, 21(2): 139-145. (Huang Y, Wang J F, Zhang H S.2004. Advances on plant pentose phosphate pathwayand its key enzymes[J]. Chinese Bulletin of Botany, 21(2): 139-145.) [4] 金辉, 许忠祥, 陈金花, 等. 2009. 铁皮石斛组培苗与菌根真菌共培养过程中的相互作用[J]. 植物生态学报, 33(3): 433-441. (Jin H,Xu Z X, Chen J H, et al.2009. Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture[J]. Chinese Journal of Plant Ecology, 33(3): 433-441.) [5] 吕旻珈. 2019. 水稻TAL基因在对氮水平和CO2浓度变化响应中的作用[D]. 硕士学位论文, 扬州大学, 导师: 黄建晔, pp. 65-66. (Lv M J.2019. The role of TAL in response to nitrogen rate and CO2 concentrations in rice[D].Thesis for M.S., Yangzhou University, Supervisor: Huang J Y, pp. 65-66.) [6] 潘成. 2019. PagTAL参与杨树木质素合成与高温胁迫抗性的研究[D]. 硕士学位论文, 北京林业大学, 导师: 荆艳萍, pp. 35-36. (Pan C.2019. The function of PagTAL involved in lignin biosynthesis and heat stress resistance[D]. Thesis for M.S., Beijing Forestry University, Supervisor: Jing Y P, pp. 35-36.) [7] 瞿培. 2020. TAL基因调控水稻产量性状的遗传生理机制研究[D]. 硕士学位论文, 扬州大学, 导师: 梁国华, pp. 16-26. (Qu P.2020. Genetic and physiological mechanism of TAL gene in regulating rice yield traits[D]. Thesis for M.S., Yangzhou University, Supervisor: Liang G H, pp. 16-26.) [8] 尚军, 吴旺泽, 马永贵. 2022. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 38(11): 1467-1476. (Shang J, Wu W Z, Ma Y G.2022. Metabolic pathway of phenylpropane in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 38(11): 1467-1476.) [9] 汤志远, 周晓宇, 冯健, 等. 2016. 铁皮石斛多糖降血糖作用研究[J]. 南京中医药大学学报, 2(6): 43-44. (Tang Z Y, Zhou X Y, Feng J, et al.2016. Study on hypoglycemic effect of Dendrobium officinale polysaccharide[J]. Journal of Nanjing University of Chinese Medicine, 32(6): 43-44.) [10] 王伟英, 邱珊莲, 邹晖, 等. 2019. 一株铁皮石斛内生真菌的鉴定及对株型的影响[J]. 福建农业学报, 34(7): 837-841. (Wang W Y, Qiu S L, Zou H, et al.2019. Identification of an endophytic fungus and its morphological effect on Dendrobium officinale[J]. Fujian Journal of Agricultural Sciences, 34(7): 837-841.) [11] 王伟英, 邹晖, 戴艺民, 等. 2020. 瘤菌根菌对铁皮石斛根系形态的影响及其共生关系的研究[J]. 热带亚热带植物学报, 28(2): 124-130. (Wang W Y, Zou H, Dai Y M, et al.2020. Effect of Epulorhiza sp. on root morphology of Dendrobium officinale and their symbiotic relationship[J]. Journal of Tropical and Subtropical Botany, 28(2): 124-130.) [12] 王伟英, 邹晖, 林江波, 戴艺民. 2023. 转录组和代谢组联合解析瘤菌根菌对铁皮石斛促生机制的研究[J]. 热带亚热带植物学报, 31(4): 557-565. (Wang W Y, Zou H, Lin J B, et al.2023.Transcriptome sequencing and metabolite snalysis for revealing the growth promoting mechanism of Epulorhiza sp. of Dendrobium officinale[J]. Journal of Tropical and Subtropical Botany, 31(4): 557-565.) [13] 王伟英, 李海明, 戴艺民, 等. 2017. 中国水仙NtPLATZ1正、反义植物表达载体构建及转化烟草的研究[J]. 园艺学报, 44(12): 2399-2407. (Wang W Y, Li H M, Dai Y M, et al.2017. Research on construction of sense and antisense plant expression vectors of NtPLATZ1 gene in Narcissus tazetta var. chinensis and genetic transformation to Tobacco plants[J]. Acta Horticulturae Sinica, 44(12): 2399-2407.) [14] 周圣浩. 2016. 过量表达TAL基因培育水稻高产新品系[D]. 硕士学位论文, 扬州大学, 导师: 周勇, pp.1-2. (Zhou S J.2016. Development of high-yield line by over-expressing TAL gene in rice[D]. Thesis for M.S., Yangzhou University, Supervisor: Zhou Y, pp. 1-2.) [15] Caillau M, Quick W P.2010. New insights into plant transaldolase[J]. Plant Journal, 43(1): 1-16. [16] Dong N Q, Lin H X.2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 63(1): 180-209. [17] Pfeifenschenider J, Markert B, Stolzenberger J, et al.2020. Transaldolase in Bacillus methanolicus: Biochemical characterization and biological role in ribulose monophosphate cycle[J]. BMC Microbiology, 20(1): 63-76. [18] Ramos-Martinez J I.2017. The regulation of the pentose phosphate pathway: Remember krebs[J]. Archives of Biochemistry and Biophysics, 614: 50-52. [19] Rong Y, Li T Z, Liu X, et al.2021. AsTal1 from Aquilaria sinensis regulates ABA signaling-mediated seed germination and root growth in Nicotiana benthamiana[J]. Plant Cell, 147: 97-106. [20] Vanholme R, Storme V, Vanholme B, et al.2012. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis[J]. Plant Cell, 24(9): 3506-3529. [21] Xia L J, Liu X F, Guo H Y, et al.2012. Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale (Tiepishihu) in vitro[J]. Journal of functional foods, 4(1): 294-301. [22] Xiong Y Q, DeFraia C, Williams D, et al.2009. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development[J]. Plant and Cell Physiology, 50(7): 1277-1291. [23] Yang L, Wang X, Chang N, et al.2019. Cytosolic glucose-6-phosphate dehydrogenase isinvolved in seed germination and root growth under salinity in Arabidopsis[J]. Frontiers in Plant Science, 10: 182-196. [24] Yang Z F, Zhu Y, Huang J L, et al.2015. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development[J]. New Phytologist, 206(2): 807-816. [25] Zheng M, Zhu C Y, Yang T T, et al.2020. GSM2, a transaldolase, contributes to reactive oxygen species homeostasis in Arabidopsis[J]. Plant Molecular Biology, 104: 39-53. |
|
|
|