| 
					
						|  |  
    					|  |  
    					| Cloning of eif2ak3 and chop and Their Response Characteristics to Heat Stress in Small Yellow Croaker (Larimichthys polyactis) |  
						| LIU Si-Fang1,2, LIU Feng2, ZHANG Tian-Le2, LI Qian2,3, LIU Hao-Wen1,2, ZHU Jia-Jie2,4, YANG Qian-Qian1, LOU Bao2,* |  
						| 1 College of Life Sciences, China Jiliang University, Hangzhou 310018, China; 2 Institute of Hydrobiology/Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
 3 National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
 4 School of Marine Sciences, Ningbo University, Ningbo 315832, China
 |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
														| 
													
													    | Abstract  Fish are typical ectothermic animals. Under high temperatures, fish are susceptible to endoplasmic reticulum (ER) stress, which activates the eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3) / C/EBP-homologous protein (CHOP) signaling pathway, thereby inducing apoptosis and tissue damage. To investigate the response characteristics of eif2ak3 and chop in small yellow croaker (Larimichthys polyactis) under high-temperature stress, this study used small yellow croaker as the research subject and cloned the CDS of eif2ak3 and chop. The CDS of eif2ak3 was cloned, comprising 3 321 bp and encoding 1 106 amino acids, with conserved domains STKc_EIF2AK3_PERK and Luminal_EIF2AK3. Additionally, the CDS of chop was obtained, spanning 939 bp and encoding 263 amino acids, featuring a single BRLZ conserved domain. Phylogenetic analysis indicated that eif2ak3 and chop in the small yellow croaker exhibit the closest evolutionary relationship with their orthologs in the large yellow croaker (L. crocea). qPCR analysis revealed that eif2ak3 and chop were ubiquitously expressed across various tissues of the small yellow croaker, albeit with significant tissue-specific variation. Specifically, eif2ak3 expression was highest in the liver, whereas chop expression was highest in the heart. Under heat stress at (32±0.5) ℃, the liver expression profiles of eif2ak3 and chop were synchronized, peaking immediately upon reaching 32 ℃ and declining progressively thereafter. This suggested that eif2ak3 and chop playing a critical regulatory role during the initial phase of the heat stress response. This study reveals the expression characteristics of eif2ak3 and chop in response to heat stress, providing important data for further elucidating the molecular mechanisms of fish response to heat stress. |  
															| Received: 25 March 2025 |  
															|  |  
															| Corresponding Authors:
																*loubao6577@163.com |  |  |  |  
													
																												  
															| [1] 储天琪, 刘峰, 陈红林, 等. 2022. 小黄鱼肝脏中hsp90b1和hspb1对温度胁迫的响应[J]. 农业生物技术学报, 30(3): 528-538. (Chu T Q, Liu F, Chen H L, et al.2022. Response of hsp90b1 and hspb1 to temperature stress in the liver of Larimichthys polyactis[J]. Journal of Agricultural Biotechnology, 30(3): 528-538.)
 [2] 郭明鑫, 高圣柠, 吴怡欢, 等. 2024. 基于内质网应激PERK/ATF4/CHOP信号通路探讨丹参多酚酸盐对膜性肾病大鼠足细胞凋亡的影响[J]. 江苏中医药, 56(09): 67-73.
 (Guo M X, Gao S N, Wu Y H, et al.2024. Study of salvianolate on podocyte apoptosis in membranous nephritis rats based on PERK/ATF4/CHOP signaling pathway of endoplasmic reticulum stress[J]. Jiangsu Journal of Traditional Chinese Medicine, 56(09): 67-73.)
 [3] 黄晓平, 苟沙沙, 李波, 等. 2023. 基于内质网应激PERK/eIF2α/ATF4/CHOP通路探讨枳葛口服液含药血清对乙醇诱导BRL-3A损伤的保护作用及机制研究[J]. 世界科学技术-中医药现代化, 25(11): 3715-3723.
 (Huang X P, Gou S S, Li B, et al.2023. Exploring the protective effect and mechanism of serum containing zhige oral solution ameliorate ethanol-induced BRL-3A damage based on endoplasmic reticulum stress PERK/ eIF2α/ATF4/CHOP pathway[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 25(11): 3715-3723.)
 [4] 靳纪明, 路晶晶, 李小勇, 等. 2025. 鱼类对高温胁迫响应及机制研究进展[J]. 水产科学, 44(01): 151-161.
 (Jin J M, Lu J J, Li X Y, et al.2025. Research progress on response mechanism of fish to high temperature stress[J]. Fisheries Science, 44(01): 151-161.)
 [5] 何雨, 刘峰, 张天乐, 等. 2024. 高温胁迫对小黄鱼肝脏组织结构和细胞凋亡的影响[J]. 浙江农业学报, 36(01): 58-66.
 (He Y, Liu F, Zhang T L, et al.2024. Histological study on the effect of high temperature stress on liver tissue in Larimichthys polyactis[J]. Acta Agriculturae Zhejiangensis, 36(01): 58-66.)
 [6] 邝永胜, 穆芸, 孙甜甜, 等. 2024. 小反刍兽疫病毒诱导的内质网应激对山羊肾细胞PERK信号通路和细胞凋亡的影响[J]. 中国兽医学报, 44(09): 1882-1891.
 (Kuang Y S, Mu Y, Sun T T, et al.2024. Effect of endoplasmic reticulum stress induced by peste des petits ruminants virus on PERK signaling pathway and apoptosis in goat kidney cells[J]. Chinese Journal of Veterinary Science, 44(09): 1882-1891.)
 [7] 刘峰, 刘阳阳, 楼宝, 等. 2016. 温度对小黄鱼体内抗氧化酶及消化酶活性的影响[J]. 海洋学报, 38(12): 76-85.
 (Liu F, Liu Y Y, Lou B, et al.2016. Effect of water temperature on antioxidant and digestive enzymes activities in Larimichthys polyactis[J]. Haiyang Xuebao, 38(12): 76-85.)
 [8] 宋玉峰. 2016. 内质网应激在铜差异性影响黄颡鱼和虾虎鱼脂代谢中的作用及其机制[D]. 博士学位论文, 华中农业大学, 导师: 罗智, pp. 12-42.
 (Song Y F.2016. Effects and mechanisms of endoplasmic reticulum stress on copper-induced alteration in lipid metabolism in yellow catfish Pelteobagrus fulvidraco and javelin goby Synechogobius hasta[D]. Thesis for Ph.D., Huazhong Agricultural University, Suppervisor: Luo Z, pp. 12-42.)
 [9] 孙旋辉, 邴旭文, 丁炜东, 等. 2022. 高温应激对鳜幼鱼血清生化指标及肝脏sod基因和热休克蛋白基因表达的影响[J]. 南方农业学报, 53(12): 3539-3547.
 (Sun X H, Bing X W, Ding W D, et al.2022. Effects of high-temperature stress on serum biochemical indices and expression of liver sod and heat shock protein genes in juvenile mandarin fish Siniperca chuatsi[J]. Journal of Southern Agriculture, 53(12): 3539-3547.)
 [10] Ariyama Y, Tanaka Y, Shimizu H, et al.2008. The role of CHOP messenger RNA expression in the link between oxidative stress and apoptosis[J]. Metabolism, 57(12): 1625-1635.
 [11] Chen Q L, Gong Y, Luo Z, et al.2013. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco[J]. Aquatic Toxicology, 142-143: 380-386.
 [12] Chu T, Liu F, Qin G, et al.2020. Transcriptome analysis of the Larimichthys polyactis under heat and cold stress[J]. Cryobiology, 96: 175-183.
 [13] Cui W, Li J, Ron D, et al.2011. The structure of the PERK kinase domain suggests the mechanism for its activation[J]. Acta Crystallographica Section D, Biological Crystallography, 67(Pt 5): 423-428.
 [14] Du J, Zhang J, Xiang X, et al.2022. Activation of farnesoid X receptor suppresses ER stress and inflammation via the YY1/NCK1/PERK pathway in large yellow croaker (Larimichthys crocea)[J]. Frontiers in Nutrition, 9: 1024631.
 [15] Fang M, Lei Z, Ruilin M, et al.2023. High temperature stress induced oxidative stress, gut inflammation and disordered metabolome and microbiome in tsinling lenok trout[J]. Ecotoxicology and Environmental Safety, 266: 115607.
 [16] Fu H, Li Y, Tian J, et al.2023. Contribution of HIF-1α to heat shock response by transcriptional regulation of HSF1/HSP70 signaling pathway in Pacific oyster, Crassostrea gigas[J]. Marine Biotechnology, 25(5): 691-700.
 [17] Harding H P, Zhang Y, Zeng H, et al.2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress[J]. Molecular Cell, 11(3): 619-633.
 [18] Harding H P, Zhang Y, Ron D.1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase[J]. Nature, 397(6716): 271-274.
 [19] Hu D, Yang Y, Fang L, et al.2024. Isoliquiritigenin induced hepatotoxicity and endoplasmic reticulum stress in zebrafish embryos[J]. Scientific Reports, 14(1): 28256.
 [20] Huang Z, Dai L, Peng F, et al.2023. mTOR signaling pathway regulates embryonic development and rapid growth of triploid crucian carp[J]. Aquaculture Reports, 33: 101860.
 [21] Inagi R, Ishimoto Y, Nangaku M.2014. Proteostasis in endoplasmic reticulum-new mechanisms in kidney disease[J]. Nature Reviews Nephrology, 10(7): 369-378.
 [22] Komoike Y, Matsuoka M.2013. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish[J]. Aquatic Toxicology, 142-143: 221-229.
 [23] Li N, Huang Z, Ding L, et al.2021. Endoplasmic reticulum unfolded protein response modulates the adaptation of trachemys scripta elegans in salinity water[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 248: 109102.
 [24] Li Z, Shan X, Jin X, et al.2011. Long-term variations in body length and age at maturity of the small yellow croaker (Larimichthys polyactis Bleeker, 1877) in the Bohai Sea and the Yellow Sea, China[J]. Fisheries Research, 110(1): 67-74.
 [25] Lin J H, Li H, Yasumura D, et al.2007. IRE1 signaling affects cell fate during the unfolded protein response[J]. Science, 318(5852): 944-949.
 [26] Liu F, Zhang T, He Y, et al.2023. Integration of transcriptome and proteome analyses reveals the regulation mechanisms of Larimichthys polyactis liver exposed to heat stress[J]. Fish & Shellfish Immunology, 135: 108704.
 [27] Ma F, Zhao L, Ma R, et al.2023. FoxO signaling and mitochondria-related apoptosis pathways mediate tsinling lenok trout (Brachymystax lenok tsinlingensis) liver injury under high temperature stress[J]. International Journal of Biological Macromolecules, 251: 126404.
 [28] Marciniak S J, Yun C Y, Oyadomari S, et al.2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum[J]. Genes & Development, 18(24): 3066-3077.
 [29] Maytin E V, Ubeda M, Lin J C, et al.2001. Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms[J]. Experimental Cell Research, 267(2): 193-204.
 [30] McDonnell L H, Reemeyer J E, Chapman L J.2019. Independent and interactive effects of long-term exposure to hypoxia and elevated water temperature on behavior and thermal tolerance of an equatorial cichlid[J]. Physiological and Biochemical Zoology: PBZ, 92(3): 253-265.
 [31] Mollenhauer R, Lamont M M, Foley A.2022. Long‐term apparent survival of a cold‐stunned subpopulation of juveniles green turtles[J]. Ecosphere, 13(9): e4221.
 [32] Qin D Z, Cai H, He C, et al.2021. Melatonin relieves heat-induced spermatocyte apoptosis in mouse testes by inhibition of ATF6 and PERK signaling pathways[J]. Zoological Research, 42(4): 514-524.
 [33] Rodriguez D, Rojas-Rivera D, Hetz C.2011. Integrating stress signals at the endoplasmic reticulum: The BCL-2 protein family rheostat[J]. Biochimica et Biophysica Acta, 1813(4): 564-574.
 [34] Rozpedek W, Pytel D, Mucha B, et al.2016. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress[J]. Current Molecular Medicine, 16(6): 533-544.
 [35] Saha A, Kuzuhara T, Echigo N, et al.2010. Apoptosis of human lung cancer cells by curcumin mediated through up-regulation of "growth arrest and DNA damage inducible genes 45 and 153"[J]. Biological and Pharmaceutical Bulletin, 33(8): 1291-1299.
 [36] Schmittgen T D, Zakrajsek B A.2000. Effect of experimental treatment on housekeeping gene expression: Validation by real-time, quantitative RT-PCR[J]. Journal of Biochemical and Biophysical Methods, 46(1-2): 69-81.
 [37] Song Y F, Huang C, Shi X, et al.2016. Endoplasmic reticulum stress and dysregulation of calcium homeostasis mediate Cu-induced alteration in hepatic lipid metabolism of javelin goby Synechogobius hasta[J]. Aquatic Toxicology, 175: 20-29.
 [38] Song Y F, Luo Z, Huang C, et al.2015. Endoplasmic reticulum stress-related genes in yellow catfish Pelteobagrus fulvidraco: Molecular characterization, tissue expression, and expression responses to dietary copper deficiency and excess[J]. G3 (Bethesda, Md), 5(10): 2091-2104.
 [39] Sudhir K, Glen S, Koichiro T.2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7): 1870-1874.
 [40] Tabas I, Ron D.2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticul um stress[J]. Nature Cell Biology, 13(3): 184-190.
 [41] Tang Z, Yang Y, Wu Z, et al.2023. Heat stress-induced intestinal barrier impairment: Current insights into the aspects of oxidative stress and endoplasmic reticulum stress[J]. Journal of Agricultural and Food Chemistry, 71(14): 5438-5449.
 [42] Walter P, Ron D.2011. The unfolded protein response: From stress pathway to homeostatic regulation[J]. Science, 334(6059): 1081-1086.
 [43] Wang H, Liu Z, Gou Y, et al.2015. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway[J]. International Journal of Nanomedicine, 10: 5505-5512.
 [44] Wei J, Fang D.2021. Endoplasmic reticulum stress signaling and the pathogenesis of hepatocarcinoma[J]. International Journal of Molecular Sciences, 22(4):1799
 [45] Wu Z, Wang F, Hu L, et al.2021. Inhibition of endoplasmic reticulum stress-related autophagy attenuates MCLR-induced apoptosis in zebrafish testis and mouse TM4 cells[J]. Ecotoxicology and Environmental Safety, 221: 112438.
 [46] Zhang J, Singh N, Robinson-Taylor K S, et al.2015. Hepatocyte autophagy is linked to C/EBP-homologous protein, Bcl2-interacting mediator of cell death, and BH3-interacting domain death agonist gene expression[J]. Journal of Surgical Research, 195(2): 588-595.
 [47] Zhang T, Li D, Wan L, et al.2017. Ctenopharyngodon idella PERK (EIF2AK3) decreases cell viability by phosphorylating eIF2α under ER stress[J]. Fish & Shellfish Immunology, 70: 568-574.
 [48] Zhang Z, Zhang L, Zhou L, et al.2019. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress[J]. Redox Biology, 25: 101047.
 [49] Zhao X, Li L, Li C, et al.2022. Heat stress-induced endoplasmic reticulum stress promotes liver apoptosis in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 546: 737401.
 [50] Zou X J, Yang L, Yao S L.2012. Endoplasmic reticulum stress and C/EBP homologous protein-induced Bax translocation are involved in angiotensin II-induced apoptosis in cultured neonatal rat cardiomyocytes[J]. Experimental Biology and Medicine, 237(11): 1341-1349.
 |  
											 
											 |  |  |