| 
					
						|  |  
    					|  |  
    					| Identification of Biocontrol Bacillus QB-2-7 and BM-7 and Their Synthetic Microbial Community Effects on the Protection of Potato Anthracnose |  
						| LI Ya-Nan, ZHANG Hao-Jie, SHI Hui-Qin, LUO Ming-Kai, FENG Rui-Chao, YANG Qi-Lin, SHEN Shuo* |  
						| Academy of Agriculture and Forestry Sciences/Qinghai-Tibet Plateau Germplasm Resources Research and Utilization Laboratory/Key Laboratory of Qinghai-Tibetan Plateau Biotechnology of Ministry of Education/Key Laboratory of Potato Breeding of Qinghai/Engineering Research Center of Potato in Northwest Region Ministry of Education, Qinghai University, Xining 810016, China |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
														| 
													
													    | Abstract  Potato anthracnose caused by Colletotrichum coccodes represents a significant phytopathological constraint in both potato (Solanum tuberosum) cultivation and postharvest storage. In this study, C. coccodes was used as the pathogen, and 2 endophytic bacteria (QB-2-7 and BM-7 ) with good bacteriostatic effect on C. coccodes preserved in the early stage of the laboratory were used to explore the control effect of its synthetic microbial community on potato anthracnose through in vivo and pot control experiments.Through comprehensive morphological characterization, physiological profiling, and molecular phylogenetic analysis, the isolates were taxonomically identified as Bacillus atrophaeus (QB-2-7) and B. safensis (BM-7), respectively. Biosafety assessment confirmed the non-hemolytic nature of both strains. Optimal consortium performance was achieved at a QB-2-7∶BM-7 ratio of 7∶3, demonstrating excellent microbial compatibility. Comparative analysis of different fermentation fractions revealed that the crude fermentation broth exhibited maximal antifungal activity (64.13% inhibition). In vivo evaluation of tuber protection efficacy demonstrated superior disease suppression in preventive applications (78.5% control efficiency) compared to both curative treatments and conventional azoxystrobin applications. The synthetic microbial community significantly enhanced host defense responses, as evidenced by elevated superoxide dismutase (SOD) and peroxidase (POD) activities, coupled with reduced polyphenol oxidase (PPO) activity and malondialdehyde (MDA) accumulation. Additional characterization revealed robust environmental tolerance of the fermentation products, including resistance to photodegradation, UV irradiation, and thermal stress, along with pronounced biofilm formation capacity. At the same time, the potato pot experiments showed that the synthetic microbial community had a significant prevention and control effect on potato anthracnose. These findings collectively suggest that the QB-2-7 and BM-7 synthetic microbial community consortium holds substantial promise as a biocontrol agent against potato anthracnose, providing both theoretical foundations and practical methodologies for developing microecological preparations targeting this economically important disease. |  
															| Received: 13 March 2025 |  
															|  |  
															| Corresponding Authors:
																*fjfzss@126.com |  |  |  |  
													
																												  
															| [1] 敖远, 杨成德, 郭庄园, 等. 2024. 枯草芽孢杆菌'262XY2'菌剂对番茄枯萎病的预防效果及其对相关抗性生化指标的影响[J]. 生物安全学报, 33(04): 402-407. (Ao Y, Yang C D, Guo Z Y, et al.2024. Preventive effects of Bacillus subtilis '262XY2' agent on tomato Fusarium wilt and its impact on related resistance biochemical indicators[J]. Journal of Biosafety, 33(04): 402-407.)
 [2] 曹静, 客绍英, 王树桐, 等. 2005. 20种植物提取物对马铃薯晚疫病菌的抗菌活性研究[J]. 中国农学通报, (12): 343-345.
 (Cao J, Ke S Y, Wang S T, et al., 2005. Study on the antibacterial activity of 20 plant extracts against Phytophthora infestans[J]. China Agricultural Bulletin, (12): 343-345.)
 [3] 常程程. 2023. 大宗粮食黄曲霉毒素高效降解菌的筛选与机理初探[D]. 硕士学位论文, 兰州交通大学, 导师: 孟宪刚, pp. 31-37.
 (Chang C C.2023. Screening and preliminary mechanism study of high-efficiency aflatoxin-degrading bacteria for staple grains[D]. Thesis for M. S., Lanzhou Jiaotong University, Supervisor: Meng X G, pp. 31-37.)
 [4] 常峻嘉. 2024. 抗逆微生物筛选及其在向日葵菌核病生防实践中的应用评价[D]. 硕士学位论文, 贵州民族大学, 导师: 陶刚, pp. 21-50.
 (Chang J J.2024. Screening of stress-resistant microorganisms and their application evaluation in biocontrol of sunflower Sclerotinia rot[D]. Thesis for M. S., Guizhou Minzu University, Supervisor: Tao G, pp. 21-50.)
 [5] 陈大为, 周天琦, 张培怡, 等. 2022. 萎缩芽胞杆菌(Bacillus atrophaeus) GJW2-1可湿性粉剂研制及对党参灰霉病的防治效果[J]. 微生物学杂志, 42(06): 87-93.
 (Chen D W, Zhou T Q, Zhang P Y, et al.2022. Development of Bacillus atrophaeus GJW2-1 wettable powder and its control efficacy against Botrytis cinerea in Codonopsis pilosula[J]. Journal of Microbiology, 42(06): 87-93.)
 [6] 陈云云, 李惠霞, 张海英, 等. 2021. 萎缩芽胞杆菌MQ19ST15鉴定及对甘蓝枯萎病的盆栽防效[J]. 植物保护, 47(05): 64-71.
 (Chen Y Y, Li H X, Zhang H Y, et al.2021. Identification of Bacillus atrophaeus MQ19ST15 and its pot control efficacy against cabbage Fusarium wilt[J]. Plant Protection, 47(05): 64-71.)
 [7] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, pp. 47-64.
 (Dong X Z, Cai M Y.2001. Common Manual of Systematic Bacteriological Identification[M]. Science Press, Beijing, China, pp. 47-64.)
 [8] 高艳侠. 2019. 一株贝莱斯芽孢杆菌LF01的分离、鉴定及其应用研究[D]. 硕士学位论文, 上海海洋大学, 导师: 卢迈新, pp. 23-31.
 (Gao Y X.2019. Isolation, identification, and application of Bacillus velezensis LF01[D]. Thesis for M. S., Shanghai Ocean University, Supervisor: Lu M X, pp. 23-31.)
 [9] 葛文沛, 王洪玲, 崔欣然, 等. 2024. 茄腐镰刀菌拮抗菌株M1的抑菌机理及其促生作用研究[J]. 中国酿造, 43(10): 142-148.
 (Ge W P, Wang H L, Cui X R, et al.2024. Antibacterial mechanism and growth-promoting effects of antagonistic strain M1 against Fusarium solani[J]. China Brewing, 43(10): 142-148.)
 [10] 何善斌, 常笃, 毛亚辉, 等. 2025. 微生物“清-防-驱”增效解堵体系的性能评价与现场试验[J/OL]. 生物加工过程, 23(01): 32-41.
 (He S B, Chang D, Mao Y H, et al.2025. Performance evaluation and field trial of a microbial 'clean-prevent-drive' synergistic plugging system[J/OL]. Chinese Journal of Bioprocess Engineering, 23(01): 32-41.)
 [11] 何霜霜. 2020. 马铃薯黄萎病生防复合菌菌剂的研制[D]. 硕士学位论文. 内蒙古农业大学, 导师: 周洪友, pp. 9-43.
 (He S S.2020. Development of a biocontrol compound microbial agent against potato Verticillium wilt[D]. Thesis for M. S., Inner Mongolia Agricultural University, Supervisor: Zhou H Y, pp. 9-43.)
 [12] 侯红英, 陈媛. 2023. 生物防治技术在农业病虫害防治中的应用研究[J]. 粮油与饲料科技, (01): 45-47.
 (Hou H Y, Chen Y. 2023. Application of biocontrol technology in agricultural pest control[J]. Cereals and Oils & Feed Science and Technology, (01): 45-47.)
 [13] 黄勋, 刘霞, 邓琳梅, 等. 2025. 马铃薯疮痂病生防菌1X1Y的鉴定及其生防促生特性研究[J]. 园艺学报, 52(01): 229-246.
 (Huang X, Liu X, Deng L M, et al.2025. Identification of biocontrol strain 1X1Y against potato scab and its biocontrol and growth-promoting characteristics[J]. Acta Horticulturala Sinica, 52(01): 229-246.)
 [14] 惠娜娜, 王立, 郑果, 等. 2021. 8种杀菌剂对马铃薯炭疽病病菌室内毒力测定[J]. 甘肃农业科技, 52(04): 22-24.
 (Hui N N, Wang L, Zheng G, et al.2021. Indoor toxicity determination of 8 fungicides against potato anthracnose[J]. Gansu Agricultural Science and Technology, 52(04): 22-24.)
 [15] 蒋艳青, 杨建闻, 李杨, 等. 2025. 大姜根腐病生防木霉菌株的分离与鉴定[J/OL]. 山东科学, 1-11.
 (Jiang Y Q, Yang J W, Li Y, et al.2025. Isolation and identification of biocontrol Trichoderma strains against ginger root rot[J/OL]. Shandong Science, 1-11.)
 [16] 李丽艳, 孙杉杉. 章孜亮, 等. 2021. 2株生防细菌协同拮抗马铃薯疮痂病及其防治效果研究[J]. 安徽农业科学, 49(01): 122-124+134.(Li L Y, Sun S S, Zhang Z L, et al. 2021. Synergistic antagonism and control effects of two biocontrol bacteria against potato common scab[J]. Journal of Anhui Agricultural Sciences, 49(01): 122-124+134.)
 [17] 李颖颖, 康业斌, 李成军, 等. 2023. 3种拮抗烟草疫霉及产IAA内生细菌的分离鉴定[J]. 江苏农业科学, 51(18): 107-114.
 (Li Y Y, Kang Y B, Li C J, et al.2023. Isolation and identification of three endophytic bacteria antagonistic to Phytophthora nicotianae and producing IAA[J]. Jiangsu Agricultural Sciences, 51(18): 107-114.)
 [18] 刘姣姣, 严哲伟, 张义菊, 2023. 等. 一株沙福芽胞杆菌ZG6的筛选、鉴定及其对茶树轮斑病的生防潜力研究[J]. 中国生物防治学报, 39(01): 212-220.
 (Liu J J, Yan Z W, Zhang Y J, et al.2023. Screening, identification, and biocontrol potential of Bacillus safensis ZG6 against tea tree zonate leaf spot[J]. Chinese Journal of Biological Control, 39(01): 212-220.)
 [19] 刘邮洲, 陈夕军, 梁雪杰, 等. 2017. 一株萎缩芽胞杆菌YL3的鉴定及其脂肽类化合物分析[J]. 中国生物防治学报, 33(01): 20-28.
 (Liu Y Z, Chen X J, Liang X J, et al.2017. Identification of Bacillus atrophaeus YL3 and analysis of its lipopeptide compounds[J]. Chinese Journal of Biological Control, 33(01): 20-28.)
 [20] 马爽. 2023. 贝莱斯芽孢杆菌K-9的筛选及其对马铃薯疮痂病生防机制的研究[D]. 博士学位论文, 黑龙江八一农垦大学, 导师: 王彦杰, pp. 23-126.
 (Ma S.2023. Screening of Bacillus velezensis K-9 and its biocontrol mechanism against potato common scab[D]. Thesis for Ph. D., Heilongjiang Bayi Agricultural University, Supervisor: Wang Y J, pp. 23-126.)
 [21] 聂宁. 2024. 植物病虫害防治中生物技术的应用研究[J]. 农业开发与装备, (07): 184-186.
 (Nie N. 2024. Application of biotechnology in plant pest control[J]. Agricultural Development & Equipments, (07): 184-186.)
 [22] 乔柳. 2020. 复合微生物菌剂的研制及对马铃薯晚疫病的预防效果[D]. 硕士学位论文, 河北大学, 导师: 蒋继志, 黄军, pp. 1-40.
 (Qiao L.2020. Development of compound microbial agent and its preventive effect on potato late blight[D]. Thesis for M. S., Hebei University, Supervisor: Jiang J Z, Huang J, pp. 1-40.)
 [23] 申芬. 2019. 复合发酵菌液预防马铃薯晚疫病的生理生化机制探讨[D]. 硕士学位论文, 河北大学, 导师:蒋继志: pp. 22-42.
 (Shen F.2019. Discussion on the physiological and biochemical mechanism of compound fermentation liquid to prevent potato late blight[D]. Thesis for M. S., Hebei University, Supervisor: Jiang J Z, pp. 22-42.)
 [24] 宋淑敏, 董代幸, 盛强, 等. 2024. 梨火疫病菌拮抗菌株组合的亲和力及其防病效果测定[J]. 西北农业学报, 33(11): 2202-2211.
 (Song S M, Dong D X, Sheng Q, et al.2024. Compatibility and disease control efficacy of antagonist combinations against Erwinia amylovora[J]. Acta Agriculturae Boreali-occidentalis Sinica, 33(11): 2202-2211.)
 [25] 王涵琦, 畅涛, 杨成德, 等. 2014. 马铃薯炭疽病(Colletotrichum coccodes)拮抗菌株的筛选及鉴定[J]. 植物保护, 40(01): 38-42.
 (Wang H Q, Chang T, Yang C D, et al.2014. Screening and identification of antagonistic strains against potato anthracnose (Colletotrichum coccodes)[J]. Plant Protection, 40(01): 38-42.)
 [26] 王捷. 2022. 苹果腐烂病生防芽孢杆菌的筛选鉴定及其防治效果初探[D]. 硕士学位论文, 西北农林科技大学, 导师: 韦革宏, pp. 38-45.
 (Wang J.2022. Screening, identification, and preliminary study on the control efficacy of biocontrol Bacillus against apple canker[D]. Thesis for M. S., Northwest A&F University, Supervisor: Wei G H, pp. 38-45.)
 [27] 王剑虹, 孙述学, 陈平纡, 等. 1998. 肺炎链球菌培养研究[J]. 微生物学免疫学进展, (04): 48-52.
 (Wang J H, Sun S X, Chen P Y, et al. 1998. Study on Streptococcus pneumoniae culture[J]. Progress in Microbiology and Immunology, (04): 48-52.)
 [28] 王怡凡, 刘巍, 朱其立, 等. 2024. 马铃薯早疫病生防细菌WB-1的筛选及鉴定[J]. 东北农业科学, 49(02): 41-47.
 (Wang Y F, Liu W, Zhu Q L, et al.2024. Screening and identification of biocontrol bacterium WB-1 against potato early blight[J]. Northeast Agricultural Sciences, 49(02): 41-47)
 [29] 王亚月, 贾方方, 常栋, 等. 2022. 4种生防菌对烟草黑胫病的防治效果及对根际土壤微生物群落结构的影响[J]. 烟草科技, 55(11): 23-31.
 (Wang Y Y, Jia F F, Chang D, et al.2022. Control effects of four biocontrol bacteria on tobacco black shank and their impact on rhizosphere soil microbial community structure[J]. Tobacco Science & Technology, 55(11): 23-31.)
 [30] 吴慧芳, 蒙耀, 石晖琴, 等. 2024. 一株马铃薯干腐病生防菌的鉴定及其抑菌活性研究[J]. 植物保护, 50(03): 111-120.
 (Wu H F, Meng Y, Shi H Q, et al.2024. Identification and antibacterial activity of a biocontrol strain against potato dry rot[J]. Plant Protection, 50(03): 111-120.)
 [31] 许帅, 谢学文, 张昀, 等. 2020.马铃薯枯萎病生防芽胞杆菌筛选及生防效果研究[J]. 中国生物防治学报, 36(05):761-770.
 (Xu S, Xie X W, Zhang Y, et al.2020. Screening of biocontrol Bacillus isolate against potato Fusarium wilt and its biocontrol effect[J]. Chinese Journal of Biological Control, 36(5): 761-770.)
 [32] 杨成德, 姜红霞, 陈秀蓉, 等. 2012. 甘肃省马铃薯炭疽病的鉴定及室内药剂筛选[J]. 植物保护, 38(06): 127-133.
 (Yang C D, Jiang H X, Chen X R, et al.2012. Identification and indoor fungicide screening for potato anthracnose in Gansu Province[J]. Plant Protection, 38(06): 127-133.)
 [33] 杨吉明, 王亚杰, 马亚男, 等. 2025. AM真菌与木霉对紫花苜蓿应答尖孢镰刀菌侵染的影响[J]. 草业科学, 42(05): 1162-1171.
 (Yang J M, Wang Y J, Ma Y N, et al.2024. Effects of AM fungi and Trichoderma on alfalfa responses to Fusarium oxysporum infection[J]. Pratacultural Science, 42(05): 1162-1171.)
 [34] 杨腾峰, 闫建培, 侯星羽, 等. 2024. 苜蓿链霉菌TX21抑菌作用确定及促生物质的鉴定[J]. 中国生物防治学报, 40(02): 359-369.
 (Yang T F, Yan J P, Hou X Y, et al.2024. Determination of antibacterial activity and identification of growth-promoting substances from Streptomyces melilot TX21[J]. Chinese Journal of Biological Control, 40(02): 359-369.)
 [35] 于水清, 杨毅清, 张岱, 等. 2021. 马铃薯早疫病拮抗细菌的筛选、鉴定及抑菌物质研究[J]. 西南农业学报, 34(6): 1234-1241.
 (Yu S Q, Yang Y Q, Zhang D, et al.2021. Screening, identification, and antibacterial substance analysis of antagonistic bacteria against potato early blight[J]. Southwest China Journal of Agricultural Sciences, 34(6): 1234-1241.)
 [36] 曾凤花, 谢玲, 黄皓, 等. 2025. 枝孢瓶霉属合成菌群对生姜青枯病的生物防治[J/OL]. 南方农业学报, 1-15.
 (Zeng F H, Xie L, Huang H, et al.2025. Biocontrol of ginger bacterial wilt by Cladophialophora synthetic consortia[J/OL]. Journal of Southern Agriculture, 1-15.)
 [37] 张倩, 陈雨诗, 许春艳, 等. 2023. 贝莱斯芽孢杆菌防治甜樱桃采后软腐病的效果和机理[J]. 食品科学, 44(07): 229-239.
 (Zhang Q, Chen Y S, Xu C Y, et al.2023. Control effects and mechanisms of Bacillus velezensis on postharvest soft rot of sweet cherry[J]. Food Science, 44(07): 229-239.)
 [38] 张雨雨, 高晨, 董雅芹, 等. 2024. 萎缩芽孢杆菌CY1对马铃薯疮痂病的防治效果和抑菌机理初探[J]. 安徽工程大学学报, 39(04): 9-15.
 (Zhang Y Y, Gao C, Dong Y Q, et al.2024. Preliminary study on control effects and antibacterial mechanism of Bacillus atrophaeus CY1 against potato common scab[J]. Journal of Anhui Polytechnic University, 39(04): 9-15.)
 [39] 张子奇, 李光哲, 丁佳玉, 等. 2024. 烟草赤星病拮抗菌YZ01发酵条件优化及抑菌活性物质初探[J]. 中国生物防治学报, 40(02): 347-358.
 (Zhang Z Q, Li G Z, Ding J Y, et al.2024. Optimization of fermentation conditions and preliminary study on antibacterial substances of antagonistic strain YZ01 against tobacco brown spot[J]. Chinese Journal of Biological Control, 40(02): 347-358.)
 [40] 赵娟, 左文杰, 张殿朋, 等. 2024. 芽胞杆菌JZB30-1的鉴定及其对番茄灰霉病的生防作用[J]. 植物保护, 50(03): 165-175.
 (Zhao J, Zuo W J, Zhang D P, et al.2024. Identification of Bacillus JZB30-1 and its biocontrol effect on tomato gray mold[J]. Plant Protection, 50(03): 165-175.)
 [41] 朱倬漪, 姜昕, 马鸣超, 等. 2024. 一株蒽降解菌的分离筛选及降解特性初析[J]. 中国土壤与肥料, (03): 198-208.
 (Zhu Z Y, Jiang X, Ma M C, et al. 2024. Isolation and screening of an anthracene-degrading strain and preliminary analysis of its degradation characteristics[J]. China Soil and Fertilizer, (03): 198-208.)
 [42] Andrić S, Meyer T, Ongena M.2020. Bacillus responses to plant-associated fungal and bacterial communities[J]. Frontiers in Microbiology, 11: 01350.
 [43] Chen L, Zhang H, Zhao S, et al.2021. Lipopeptide production by Bacillus atrophaeus strain B44 and its biocontrol efficacy against cotton rhizoctoniosis[J]. Biotechnology Letters, 43(6): 1-11.
 [44] Chen Y, Yang F, Chai Y R, et al.2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation[J]. Environmental Microbiology, 15(3): 848-864.
 [45] Du C J, Yang D, Ye Y F, et al.2022. Construction of a compound microbial agent for biocontrol against Fusarium wilt of banana[J]. Frontiers in Microbiology, (13). 1066807.
 [46] Hassan E A, Mostafa Y S, Alamri S, et al.2021. Biosafe management of Botrytis grey mold of strawberry fruit by novel bioagents[J]. Plants, 10(12): 2737-2737.
 [47] Hooker W J.2003. Compendium of Potato Diseases[M]. The American Phytopathological Society, Washington. pp. 2-42.
 [48] Jiang C H, Wu F, Yu Z Y, et al.2015. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli[J]. Microbiological Research, 170: 95-104.
 [49] Johnson D A, Miliczky E R.1993. Distribution and development of black dot, verticillium wilt, and powdery scab on russet burbank potatoes in Washington State[J]. Plant Disease, 80(12): 1363-1368.
 [50] Li J, Hu M, Xue Y, et al.2020. Screening, identification and efficacy evaluation of antagonistic bacteria for biocontrol of soft rot disease caused by Dickeya zeae[J]. Microorganisms, 8(5): 697.
 [51] Lee S M, Kong H G, Song G C, et al.2020. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME journal, 15(1): 330-347.
 [52] Shi H Q, Li W, Chen H Y, et al.2024. Synthetic microbial community members interact to metabolize caproic acid to inhibit potato dry rot disease[J]. International Journal of Molecular Sciences, 25(8): 4437.
 [53] Zhang X Y, Wu F, Gu N, et al.2020. Postharvest biological control of Rhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens[J]. Postharvest Biology and Technology, 163: 111146.
 [54] Zhao Y, Selvaraj J N, Xing F, et al.2017. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum[J]. Public Library of Science, 9(3): e92486.
 [55] Zhou X, Wang J T, Liu F, et al.2022. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease[J]. Nature Communications, 13(1):7890-7890.
 |  
											 
											 |  |  |