|
|
Cloning and Expression Analysis of Sucrose Synthase DoSUS2 from Dendrobium officinale |
LIU Yu-Jia1,2, LI Ya2,3, JIANG Ya-Han2, HE Bin-Rong2, CHEN Jia-Yi2, YU Bai-Yin1,2,*, LI Xiang1,2, LIU Bo-Ting1,2,* |
1 Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan 512005, China; 2 Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; 3 College of Agriculture, Henan Agricultural University, Zhengzhou 450046, China |
|
|
Abstract Sucrose synthase family is a crucial enzyme that regulates sucrose metabolism. It catalyzes the conversion of sucrose into various metabolic pathways and plays a significant role in plant growth and development, signal transduction, stress resistance and so on. In order to explore the regulatory mechanism of sucrose synthase gene 2 from Dendrobium officinale (DoSUS2), in polysaccharide anabolism and response to abiotic stress, the DoSUS2 gene (GenBank No. OQ657188) was cloned from leaves of D. officinale using homologous sequence method, the bioinformatics and expression characteristics were analyzed. The results showed that the ORF of DoSUS2 was 2 424 bp and encoded 807 amino acids, which had 36 bases differences compared with the reference sequence (Gene ID: LOC110110417), but all of them were synonymous substitutions. The theoretical molecular weight and isoelectric point of DoSUS2 protein were 92.05 kD and 5.97, respectively. It was a hydrophobic stable protein with only one signal peptide and 69 phosphorylation sites but no transmembrane domains, which contained conserved domain with SUS protein, such as sucrose synthase and glycosyl transferase domains. Tertiary structure modeling of DoSUS2 was highly homologous with AtSUS1 of Arabidopsis thaliana (73.82%), and belongs to the SUSⅠ subgroup of monocotyledonous. The expression of DoSUS2 had obvious differences among different tissues, which were relatively high in roots and floral organs while lower in leaves and stems. The promoter element analysis revealed that DoSUS2 contained several cis-acting elements in response to stress, and it was significantly induced by cold, drought stress and abscisic acid (ABA) treatment. The expression of DoSUS2 was up-regulated significantly (P<0.01) and peaked at 6 h after cold and ABA treatment, which reached 267 and 233 times compared with untreated. Similarly, the expression was also up-regulated accompanying with drought treatment time increased, and reached its peak at 9 h, its expression reached a extremely significant difference level significantly (P<0.01) which was 18.6 times then untreated group. The results showed that the DoSUS2 gene might participate in the response process to low temperature and drought stress through the ABA signaling pathway. At last, an DoSUS2 protein interaction network was generated with several enzymes closely related to glucose metabolism. These findings above suggested that DoSUS2 might respond to abiotic stress by regulating the expression of related enzyme genes and glucose metabolism pathways, thereby improving the stress resistance of D. officinale. The results would provide valuable theoretical basis for the further investigations of DoSUS2 function and its molecular mechanism in polysaccharide biosynthesis and abiotic stress response.
|
Received: 28 January 2023
|
|
Corresponding Authors:
* lyjizbd@126.com; liuboting5566@163.com
|
|
|
|
[1] 晁毛妮, 张自阳, 王润豪, 等. 2018. 大豆蔗糖合成酶家族成员的全基因组鉴定及表达分析[J]. 西北植物学报, 38(2): 232-241. (Chao M N, Zhang Z Y, Wang R H, et al.2018. Genome-wide identification and expression analysis of sucrose synthase family members in soybean[J]. Acta Botanica Boreali-Occidentalia Sinica, 38(2): 232-241.) [2] 陈慧敏, 李敏慧, 冯送联, 等. 2020. 甜玉米蔗糖合成酶基因ZmSus6和ZmSus7的克隆及组织表达特异性检测[J]. 南方农业学报, 51(5): 1098-1107. (Chen H M, Li M H, Feng S L, et al.2020. Cloning and tissue expression specificity analysis of sucrose synthase genes ZmSus6 and ZmSus7 in sweet corn[J]. Journal of Southern Agriculture, 51(5): 1098-1107.) [3] 陈娜, 胡冬青, 王道远, 等. 2013. 花生中蔗糖合成酶基因AhSuSy在花生中的组织表达及对非生物胁迫响应研究[J]. 花生学报, 42(4): 25-32. (Chen N, Hu D Q, Wang D Y, et al.2013. Expression analysis of the sucrose synthase gene AhSuSy in different tissues and under abiotic stresses in peanut[J]. Journal of Peanut Science, 42(4): 25-32.) [4] 郭利军, 邓会栋, 冯学杰, 等. 2021. 杧果蔗糖合成酶MiSS基因的克隆与表达分析[J]. 基因组学与应用生物学, 40(3): 1248-1253. (Guo L J, Deng H D, Feng X J, et al.2021. Cloning and expression analysis of sucrose synthase gene MiSS in mango[J]. Genomics and Applied Biology, 40(3): 1248-1253.) [5] 何晨晨, 刘俐君, 鲁晓燕. 2020. 基于转录组测序分析NaCl胁迫下新疆野苹果叶和根糖酵解相关基因的表达[J]. 果树学报, 37(7): 951-961. (He C C, Liu L J, Lu X Y, et al.2020. Analysis of genes related to glycolysis in the leaves and roots of Malus sieversii under NaCl stress based on transcriptome sequencing[J]. Journal of Fruit Science, 37(7): 951-961.) [6] 何嘉楠, 吴玉, 黄俊豪, 等. 2021.龙眼蔗糖合成酶基因(DlSS)的克隆及表达模式分析[J/OL]. 分子植物育种, http://kns.cnki. net/kcms/detail/46.1068.S.20211126.1037.012.html. (He J N, Wu Y, Huang J H, et al. 2021. Cloning and expression analysis of longan (Dimocarpus longan Lour.) sucrose synthasegene (DlSS) [J/OL]. Molecular Plant Breeding, http://kns.cnki. net/kcms/detail/46.1068.S.20211126.1037.012.html [7] 胡冰霜, 沈阳, 才晓溪, 等. 2021. 拟南芥蔗糖合成酶基因AtSUS响应非生物胁迫功能分析[J]. 植物生理学报, 57(2): 461-472. (Hu B S, Shen Y, Cai X X, et al.2021. Functional analysis of Arabidopsis thaliana sucrose synthase gene AtSUS in response to abiotic stress[J]. Plant Physiology Journal, 57(2): 461-472.) [8] 蒋素华, 牛苏燕, 周一冉, 等. 2020. 白及蔗糖合成酶基因的克隆及表达分析[J]. 广西植物, 40(2): 192-199. (Jiang S H, Niu S Y, Zhou Y R, et al.2020. Cloning and expression analysis of sucrose synthase gene in Bletilla striata[J]. Guihaia, 40(2): 192-199.) [9] 理雅, 刘博婷, 赖思慧, 等. 2022. 铁皮石斛DcbHLH14基因克隆及表达分析[J]. 福建农业学报, 37(9): 1145-1155. (Li Y, Liu B T, Lai S H, et al.2022. Cloning and expression of DcbHLH14 from Dendrobium catenatum Lindl.[J]. Fujian Journal of Agricultural Sciences, 37(9): 1145-1155.) [10] 李永宁, 陈雪峰, 刘欢, 等. 2022. 发菜盐胁迫响应基因蔗糖合成酶S1的克隆及原核表达[J]. 食品与发酵工业, 48(24): 77-83. (Li Y N, Chen X F, Liu H, et al.2022. Cloning and expression of Nostoc flagelliforme salt stress response gene sucrose synthase S1 in Escherichia coli[J/OL]. Food and Fermentation Industries, 48(24): 77-83.) [11] 凌秋平, 曾巧英, 周文灵, 等. 2021. 甘蔗SsCBL3基因克隆与表达分析[J]. 农业生物技术学报, 29(3): 472-480. (Ling Q P, Zeng Q Y, Zhou W L, et al.2021. Cloning and expression analysis of SsCBL3 in sugarcane (Saccharum officinarum)[J]. Journal of Agricultural Biotechnology, 29(3): 472-480. [12] 刘博婷, 吴洋, 刘宇, 等. 2022. 铁皮石斛蔗糖合成酶基因家族鉴定及表达分析[J/OL]. 分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.S.20220305.1801.015.html. (Liu B T, Wu Y, Liu Y, et al.2022. Identification and expression analysis of sucrose synthase family in Dendrobium catenatum Lindl.[J/OL]. Molecular Plant Breeding, https://kns.cnki.net/kcms/detail/46.1068.S.20220305.1801.015.html.) [13] 刘苏伟, 文艺, 张骆琪, 等. 2019. 铁棍山药SUS基因CDS区克隆与生物信息学分析[J]. 中国实验方剂学杂志, 25(9): 136-143. (Liu S W, WEN Y, Zhang L Q, et al.2019. cloning and bioinformatics analysis on CDS of SUS gene in Dioscorea opposita[J]. Chinese Journal of Experimental Traditional Medical Formulae, 25(9): 136-143.) [14] 孟衡玲, 段承俐, 萧凤回, 等. 2011. 铁皮石斛蔗糖合成酶基因的克隆及表达分析[J]. 中国中药杂志, 36(7): 833-837. (Meng H L, Duan C L, Xiao F H, et al.2011. Molecular cloning and expression analysis of sucrose synthase gene from Dendrobium officinale[J]. China Journal of Chinese Materia Medica, 36(7): 833-837.) [15] 敏云馨, 侯岁稳. 2020. 植物非生物胁迫中蛋白质磷酸化的研究进展[J]. 分子植物育种, 18(4): 1176-1186. (Min Y X, Hou S W.2020. Research progress of protein phosphorylation under abiotic stresses in plants[J]. Molecular Plant Breeding, 18(4): 1176-1186.) [16] 秦翠鲜, 桂意云, 陈忠良, 等. 2018. 植物蔗糖合成酶基因研究进展[J]. 分子植物育种, 16(12): 3907-3914. (Qin C X, Gui Y Y, Chen Z L, et al.2018. The progress of studies on sucrose synthase genes in plants[J]. Molecular Plant Breeding, 16(12): 3907-3914.) [17] 孙乐, 陈晓梅, 吴崇明, 等. 2020. 铁皮石斛多糖药理活性研究进展[J]. 药学学报, 55(10): 2322-2329. (Sun L, Chen X M, Wu C M, et al.2020. Advances and prospects of pharmacological activities of Dendrobium officinale Kimura et Migo polysaccharides[J]. Acta Pharmaceutica Sinica, 55(10): 2322-2329.) [18] 唐川, 李志, 王升贵, 等. 2019. 霍山石斛多糖的制备、功能和产品开发的研究进展[J]. 食品工业科技, 40(3): 313-320. (Tang C, Li Z, Wang S G, et al.2019. Research progress on preparation, function and product development of polysaccharide of Dendrobium huoshanense[J]. Science and Technology of Food Industry, 40(3): 313-320.) [19] 张国蓉, 梁长梅, 郭建勇, 等. 2023. 葡萄VvWRKY26基因克隆与表达分析[J]. 农业生物技术学报, 31(3): 475-487. (Zhang G R, Liang C M, Guo J Y, et al.2023. Clone and expression analysis of VvWRKY26 gene in grape (Vitis vinifera)[J]. Journal of Agricultural Biotechnology, 31(3): 475-487.) [20] 张志勇, 阳静, 齐泽民. 2017. 铁皮石斛总RNA提取方法的比较研究[J]. 江苏农业科学, 45(4): 33-35. (Zhang Z Y, Yang J, Qi Z M.2017. Comparative study on total RNA extraction methods of Dendrobium catenatum Lindl[J]. Jiangsu Agricultural Sciences, 45(4): 33-35.) [21] Barrero-Sicilia C, Hernando-Amado S, González-Melendi P, et al.2011. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley[J]. Planta, 234(2): 391-403. [22] Baud S, Vaultier M N, Rochat C.2004. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis[J]. Journal of Experimental Botany, 55(396): 397-409. [23] Chen A, He S, Li F, et al.2012. Analyses of the sucrose synthase gene family in cotton: Structure, phylogeny and expression patterns[J]. BMC Plant Biology, 12:85. [24] Chen C J, Chen H, Zhang Y, et al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [25] Chen W H, Wu J J, Li X F, et al.2021. Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: A review[J]. International Journal of Biological Macromolecules, 184: 1000-1013. [26] Coleman H D, Yan J, Mansfield S D.2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure[J]. Proceedings of the National Academy of Sciences of the USA, 106: 13118. [27] Duncan K A, Hardin S, Huber S C, et al.2006. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation[J]. Plant Cell Physiology, 47(7): 959-971. [28] Fan C F, Wang G Y, Wang Y M, et al.2019. Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice[J]. International Journal of Molecular Sciences, 20(20): 4971-4984. [29] Li J, Barojafern N E, Bahaji A, et al.2013. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms[J]. Plant and Cell Physiology, 54(2): 282-294. [30] Malek J A, Mathew S, Mathew L S, et al.2020. Deletion of beta-fructofuranosidase (invertase) genes is associated with sucrose content in date palm fruit[J]. Plant Direct, 4(5): e00214. [31] Pérez L, Soto E, Farré G, et al.2019. CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis[J]. Plant Cell Reports, 38(3): 417-433. [32] Tong X L, Wang Z Y, Ma B Q, et al.2018. Structure and expression analysis of the sucrose synthase gene family in apple[J]. Journal of Integrative Agriculture, 17(4): 847-856. [33] Wang H, Jiang W W, Guo Y C, et al.2021. Genome-wide identification and expression analysis of PIN gene family in Dendrobium catenatum[J]. Journal of Agricultural Biotechnology, 29(9): 1649-1664. [34] Wang X Q, Zheng L L, Lin H Y, et al.2017. Grape hexokinases are involved in the expression regulation of sucrose synthase and cell wall invertase encoding genes by glucose and ABA[J]. Plant Molecular Biology, 94(1-2): 61-78. [35] Wang Z, Wei P, Wu M, et al.2015. Analysis of the sucrose synthase gene family in tobacco: Structure, phylogeny, and expression patterns[J]. Planta, 242(1): 153-166. [36] Zhang C, Yu M, Ma R, et al.2015. Structure, expression profile, and evolution of the sucrose synthase gene family in peach (Prunus persica)[J]. Acta Physiologiae Plantarum, 37(4): 1-15. [37] Zhang G Q, Xu Q, Bian C, et al.2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Scientific Reports, 6: 19029. [38] Zhao C, Hua L N, Liu X F, et al.2017. Sucrose synthase FaSS1 plays an important role in the regulation of strawberry fruit ripening[J]. Plant Growth Regulation, 81(1): 175-181. [39] Zheng Y, Anderson S, Zhang Y, et al.2011. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications[J]. Journal of Biological Chemistry, 286(41): 36108-36118. |
|
|
|