|
|
Analysis of Transcriptomics and Hormone Levels of Jiaobai 'zhenong 7' in Different Growth Stages |
ZHANG Jue-Feng, LI Fang, ZHONG Hai-Ying, CHEN Jian-Ming* |
Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
|
|
Abstract Jiaobai is formed when Ustilago esculenta infects and stimulates the Zizania latifolia plant, causing endogenous hormones changes that induce the host pregnancy and stimulate the stem of the plant to swell. So determination of dynamic changes of hormones and transcriptome is important to clarify the regulation mechanism of key genes in different stages of growth and development of Jiaobai. Illumina platform sequencing technology was used to sequence the transcripts of 4 growth stages (pre tillering stage, tillering stage, pre pregnancy stage and pregnancy stage) of Jiaobai varieties 'zhenong 7' (ZN7) in this study. The results showed that total of 194 differentially expressed genes (DEGs) were screened in 4 growth stages, Gene Ontology (GO) function analysis showed that the DEGs in 4 growth stages of ZN7 were mainly involved in cell response to high light intensity and cell response to ultraviolet-A (UV-A) biological process. DEGs were mainly involved in photosynthesis, photosynthesis-antennal protein, carbon fixation in photosynthetic organisms etc. in KEGG enrichment analysis. Compared the contents of endogenous hormones in the 4 growth stages of ZN7, it was found that the trend of content changes of gibberellin (GA3), cytokinin (CTK), auxin (IAA) and abscisic acid (ABA) in each growth stage of Jiaobai were not consistent. The content of GA3 in pregnant period was significantly higher than that in tillering stage (P<0.05), contents of IAA and ABA in each period were basically the same, which was late tillering stage>early tillering stage>pregnant stage, the CTK content reached the peak in the early tillering stage, which was significantly higher than that in the late tillering stage and pregnant stage (P<0.05), but there was no significant difference among the other 3 stages. The results provide scientific basis for key genes screening and regulatory mechanisms illustrating at different growth stages of Jiaobai.
|
Received: 30 December 2022
|
|
Corresponding Authors:
*chenjm63@163.com
|
|
|
|
[1] 江解增, 邱届娟, 韩秀芹. 2004. 茭白生育过程中地上各部位内源激素的含量变化[J]. 武汉植物学研究, 22(3): 245-250. (Jiang J Z, Qiu J J, Han X Q.2004. Changes of endogenous hormone contents of different parts during development of water bamboo (Zizania latifolia)[J]. Journal of Wuhan Botanical Research, 22(3): 245-250.) [2] 康璐瑶, 邢阿宝, 崔海峰, 等. 2017. ZlADR1基因的克隆及其在茭白孕茭中的表达[J]. 农业生物技术学报, 25(11): 1799-1808. (Kang L Y, Xing A B, Cui H Fet al.2017. Cloning and expression of ZlADR1 gene during the formation of swollen stem of Zizania latifolia[J]. Journal of Agricultural Biotechnology, 25(11): 1799-1808.) [3] 李芳菲, 马文瑶, 程大伟, 等. 2019. 植物生长调节物质对葡萄着色影响的研究进展[J]. 果树学报, 36(7): 928-938. (Li F F, Ma W Y, Cheng D W, et al.2019. Advances in grape coloration regulated by plant growth regulators[J]. Journal of Fruit Science, 36(7): 928-938.) [4] 刘大同, 荆彦平, 史海翔, 等. 2014. IAA、GA3和ABA对稻根负向光性和生长的影响[J]. 作物学报, 40(9): 1658-1666. (Liu D T, Jing Y P, Shi H X, et al.Impact of IAA, GA3, and ABA on negative root phototropism and root growth of rice[J]. Acta Agronomica Sinica, 40(9): 1658-1666.) [5] 王金祥, 李玲, 潘瑞炽. 2002. 高等植物中赤霉素的生物合成及其调控[J]. 植物生理学通讯, 38(1): 1-8. (Wang J X, Li L, Pan R Z.2002. Gibberellin biosynthesis and its regulation in higher plants[J]. Plant Physiology Communications, 1: 1-8.) [6] 王培又, 张雅芬, 葛倩雯, 等. 2020. 菰黑粉菌UePkaC基因的克隆及功能研究[J]. 农业生物技术学报, 28(08): 1477-1489. (Wang P Y, Zhang Y F, Ge Q W, et al.2020. Cloning and functional study of UePkaC gene in Ustilago esculenta[J]. Journal of Agricultural Biotechnology, 28(08): 1477-1489.) [7] 吴骏成, 葛鑫涛, 杨梦飞. 2023. 用于灰茭鉴别的菰黑粉菌SNP位点挖掘及验证[J]. 农业生物技术学报, 31(2): 383-392. (Wu J C, Ge X T, Yang M F, et al.2023. Selection and application of reference genes for qRT-PCR in Ustilago esculenta[J]. Journal of Agricultural Biotechnology, 31(2): 383-392.) [8] 晏牧熙, 崔海峰, 李帅, 等. 2021. 茭白ZlRPM1.1和ZlPRM1.2基因克隆及其对菰黑粉菌菌丝侵染的响应[J]. 农业生物技术学报, 29(11): 2061-2073. (Yan M X, Cui H F, Li S, et al.Cloning of ZlRPM1.1 and ZlRPM1.2 genes and responses to the hyphal infection of Ustilago esculenta in Jiaobai[J]. Journal of Agricultural Biotechnology, 29(11): 2061-2073. [9] 应荣, 崔海峰, 倪方群. 2014. 杀菌剂敌磺钠及植物生长调节剂对茭白孕茭的影响[J]. 植物生理学报, 50(7): 946-952. (Ying R, Cui H F, Ni F Q.2014. Effects of fungicide fenaminosulf and plant growth regulator on gallformation of Zizania latifolia[J]. Plant Physiology Journal, 50(7): 946-952. [10] 俞晓平, 陈建明. 2007. 茭白高效安全生产大全[M].中国农业出版社, 北京. pp.24-27. (Yu X P, Chen J M.2007. Safety Production of Zizania latifolia[M]. China Agricultural Press.. Beijing. pp. 24-27. ) [11] 赵金成, 裘烨, 陈光辉, 等. 2016. 水稻光温敏核不育系‘亮S’异交特性研究[J]. 作物研究, 30(5): 492-496. (Zhao J C,Qiu Y, Chen G H, et al.2016. Studies on the outcrossing characteristics of ricephoto-thermosensitive genic male sterile line ‘Liang S’[J]. Crop Research, 30(5): 492-496.) [12] 赵金兰, 周美琪, 叶子弘. 2019. ZlGH3-8基因克隆及其在菰发育过程中的表达分析[J]. 农业生物技术学报, 27(011) :1942-1950. (Zhao J L, Zhou M Q, Ye Z H.2019. Cloning of ZlGH3-8 gene and its expression analysis in Zizania latifolia during development[J]. Journal of Agricultural Biotechnology, 27(011): 1942-1950.) [13] 周锦连, 陈建明, 王来亮. 2016. 敌磺钠对单季茭白产量和效益的影响[J]. 浙江农业学报, 28(4): 624-629. (Zhou J L,Chen J M, Wang L L.2016. Effects of fenaminosulf on the yields and benefits of single-harvesting Zizania latifolia Turcz. ex Stapf[J]. Acta Agriculturae Zhejiangensis, 28(4): 624-629.) [14] 朱晓琛, 张汉马, 南文斌. 2017. 脱落酸调控植物根系生长发育的研究进展[J]. 植物生理学报, 53(7): 1123-1130. (Zhu X C,Zhang X M, Nan W B.2017. Research progress on regulation of ABA in plant root development[J]. Plant Physiology Journal, 53(7): 1123-1130.) [15] Bohuon E J R, Ramsay L D, Craft J A, et al.1998. The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea[J]. Genetics, 150(1): 393-401. [16] Cao F Y, Yoshioka K, Desveaux D.2011. The roles of ABA in plant-pathogen interaction[J]. Journal of Plant Research, 124(4): 489-499. [17] Chen C Y, Zhou J H, Zhang S Y.2009. Strigolactones are a new defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds[J]. Science in China Series C: Life Sciences, 52(8): 693-700. [18] De Wit M, Galvao V C, Fankhauser C.2016. Light-mediated hormonal regulation of plant growth and development[J]. Annual Review of Plant Biology, 67(1): 513-537. [19] Fan J, Hill L, Crooks C.2009. Abscisic acid has a keyrole in modulating diverse plant-pathogen interactions[J].Plant Physiology, 150(4): 1750-1761. [20] Ferreira M E, Satagopan J, Yandell B S, et al.1995. Mapping loci controlling vernalization requirement and flowering time in Brassica napus[J]. Theoretical and Applied Genetics, 90(5): 727-732. [21] Ishikawa S, Maekawa M, Arite T.2005. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiology, 46(1): 79-86. [22] Leyser O.2005. The fall and rise of apical dominance[J]. Current Opinion in Genetics and Development, 15: 468-471. [23] Li F, Zhang J F, Zhong H Yet al.2022. Germicide fenaminosulf promots gall formation of Zizania latifolia without directly affecting the growth of endophytic fungus Ustilago esculenta[J]. BMC Plant Biology, 22: 418. [24] Li Q, Kubota C.2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce[J]. Environmental and Experimental Botany, 67(1): 59-64. [25] Lin Y L, Lin C H.1990. Involvement of tRNA bound cytokinin on the gall formation in Zizania[J]. Journal of Experimental Botany, 41(224): 277-281. [26] Liu Q, You W, Yu X, et al.2011. A preliminary study of proteome variations associated with gall formation in Zizania latifolia Trucs[J]. Plant Molecular Biology Reporter, 29(2): 360-368. [27] Nguyen H N, Perry L, Kisiala A,et al.2020. Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.)[J]. Planta, 252(5): 76. [28] Pak H, Guo Y, Chen M.2009. The effect of exogenous methyl jasmonate on the flowering time,floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus)[J]. Planta, 231(1): 79-91. [29] Robinson C J, Sailendra G, Narayan C T.2016. Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot[J]. Microbial Pathogenesis, 98: 6-15. [30] Schwechheimer C.2008. Understanding gibberellic acid signaling: Are we there yet[J]. Current Opinion in Plant Biology, 11(1): 9-15. [31] Song S S, Qi T C, Huang H.2013. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis[J].Molecular Plant, 6(4): 1065-1073. [32] Sun Q, Yoda K, Suzuki H.2005. Internal axial light conduction in the stems and roots of herbaceous plants[J]. Journal of Experimental Botany, 56(409): 191-203. [33] Tsuchida M.T, Sakai T, Hanada A, et al.2010. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism[J].The Plant Journal, 62(4): 653-662. [34] Tuan P A, Yamasaki Y, Kanno Y, et al.2019. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes[J]. Scientific Reports. 9: 3983. [35] Vanstraelen M, Benkova E.2012. Hormonal interactions inthe regulation of plant development[J]. Annual Review of Cell and Developmental Biology, 28(1): 463-487. [36] Wang Z D, Yan N, Wang Z H.2017. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta[J]. Plant Molecular Biology. 95(6): 533-547. [37] Wu T, Shen Y, Zheng M, et al.2014. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice[J]. Plant Cell Reports, 33(2): 235-244. |
|
|
|