|
|
|
| Cloning of the HvnALS Gene in Highland Barley (Hordeum vulgare var. nudum) and Its Expression Analysis Under Pyroxsulam Stress |
| QIN Yun-Zhuo1, WENG Hua2,* |
1 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; 2 Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China |
|
|
|
|
Abstract Pyroxsulam as an acetolactate synthase (ALS) inhibitor for controlling weeds in highland barley (Hordeum vulgare var. nudum) fields, ALS plays an important role in herbicide resistance in highland barley through the ALS gene. To investigate the role of the HvnALS gene in conferring pyroxsulam resistance in highland barley, this study utilized a pyroxsulam resistant variety 'Qing 0306' (R) and a susceptible variety 'Qing 0160' (S). Primers were designed based on transcriptome sequences to clone the HvnALS gene, followed by corresponding bioinformatic analysis. The results of ALS activity assay showed that the relative ALS activity of the resistant variety 'Qing 0306' (R) was extremely significantly higher than that of the control from 1~4 d after pyroxasulfone treatment. qPCR was employed to analyze the expression levels of the HvnALS gene in different resistant naked barley varieties under pyroxsulam treatment. The results showed that, the full length of the HvnALS gene (GenBank No. KAE8811959.1) was 1 941 bp, encoding 646 amino acids. Compared to known ALS gene amino acid sequences, no amino acid mutation sites were found in either variety. Multiple protein sequence alignment and phylogenetic tree analysis indicated that the HvnALS protein possesses the PLN02470 domain and exhibits the closest genetic relationship to the HvALS protein of barley (Hordeum vulgare). qPCR analysis revealed that the expression of this gene rapidly increased after pyroxsulam stress. At 1 d after application, its expression in the resistant material 'Qing 0306' (R) was ectremely significantly higher than that in the susceptible variety (P<0.01). Analysis of HvnALS gene expression following pyroxsulam stress suggested that the high-level resistance in 'Qing 0306' (R) might be associated with the overexpression of the target enzyme, rather than mutations in the target enzyme gene locus. This overexpression was likely the primary mechanism leading to pyroxsulam cross-resistance in highland barley.This study provides a theoretical reference for the genetic improvement of pyroxsulam-tolerant highland barley varieties.
|
|
Received: 08 April 2025
|
|
|
|
Corresponding Authors:
* Corresponding author, wenghua_0872@163.com
|
|
|
|
[1] 蔡青, 翁华. 2024. 转录组测序分析青稞对啶磺草胺的耐药性[J]. 福建农业学报, 39(04): 492-50 (Cai Q, Weng H.2024. Transcriptome sequencing analysis of tolerance to pyroxsulam in highland barley[J]. Fujian Journal of Agricultural Sciences, 39(4), 492-502.) [2] 陈敏菊, 孙喜云, 袁海波, 等. 2021. 高粱育种田除草剂的筛选[J]. 中国农学通报, 37(18): 159-164. (Chen M J, Sun X Y, Yuan H B, et al.2021. Screening of herbicides in sorghum breeding fields[J]. Chinese Agronomy Bulletin, 37(18): 159-164.) [3] 冯雨娟. 2016. 日本看麦娘(Alopecurus japonicus)对啶磺草胺的抗药性研究[D]. 硕士学位论文, 南京农业大学, 导师: 李俊, pp. 6-11. (Feng Y J.2016. Herbicide resistance to pyroxsulam in Alopecurus japonicus[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Li J, pp. 6-11.) [4] 康胜华, 赵珂, 侯璐. 2024. 青稞条纹病原菌遗传多样性及其致病性差异分析[J]. 分子植物育种, 22(17): 5725-5735. (Kang S H, Zhao K, Hou L.2024. Genetic diversity and pathogenicity variation analysis of highland barley stripe pathogen[J]. Molecular Plant Breeding, 22(17): 5725-5735.) [5] 李小童, 吴磊, 贾艳丽, 等. 2015. 油菜新种质12WH318咪唑啉酮抗性遗传及基因克隆和表达[J]. 中国油料作物学报, 37(03): 269-276. (Li X T, Wu L, Jia Y L, et al.2015. Genetic basis, gene cloning and expression of imidazolinone resistance in new rapeseed germplasm 12WH318[J]. Chinese Journal of Oil Crop Sciences, 37(03):, 269-276.) [6] 李亚东, 贺双, 田笑明, 等. 2017. 啶磺草胺对不同品种小麦生长发育的影响[J]. 新疆农业科学, 54(4): 682-693. (Li Y D, He S, Tian X M, et al.2017. Effects of pyroxsulam on growth and development of different wheat varieties[J]. Xinjiang Agricultural Sciences, 54(4): 682-693.) [7] 罗思荃, 曹轩, 刘乐, 等. 2022. 啶磺草胺与双氟磺草胺协同防除冬小麦田杂草效果及对小麦产量的影响[J]. 杂草学报, 40(1): 69-76. (Luo S Q, Cao X, Liu L, et al.2022. Synergistic efficacy of pyroxsulam and florasulam in weed control in winter wheat fields and their impacts on wheat yield[J]. Journal of Weed Science, 40(1): 69-76.) [8] 吕银花. 2014. 高海拔地区青稞田间主要杂草及其防除[J]. 中国农业信息, (24): 99-100. (Lv Y H.2014. Major weeds and their control in highland barley fields of high-altitude regions[J]. China Agricultural Information,(24) 99-100.) [9] 马得泉, 李雁勤, 洛桑更堆, 等. 1997. 西藏栽培大麦研究进展[J]. 西藏科技, (1): 2-8. (Ma D Q, Li Y Q, Luo S G D, et al. 1997. Research advances in cultivated barley in Tibet[J]. Tibet Science and Technology, (1): 2-8.) [10] 马紫朝. 2024. 青稞秸秆基活性炭的制备及其对水中Cu2+吸附特性的研究[J]. 甘肃科学学报, 58-62. (Ma Z C.2024. Preparation of activated carbon from highland barley (qingke) straw and its adsorption characteristics for Cu²? in aqueous solutions[J]. Gansu Journal of Science, 58-62.) [11] 王改花, 张毅, 韩玉娥, 等. 2018. 不同浓度微量元素对青稞种子萌发特性的影响[J]. 江西农业学报, 30(02): 7-10. (Wang G H, Zhang Y, Han Y E, et al.2018. Effects of different concentrations of trace elements on seed germination characteristics of highland barley (qingke)[J]. Jiangxi Journal of Agricultural Sciences, 30(2): 7-10) [12] 王琼, 陈国奇, 姜英, 等. 2015.水稻田稗属(Echinochloa spp.)杂草对稻田常用除草剂的敏感性[J]. 南京农业大学学报, 38(05): 804-809. (Wang Q, Chen G Q, Jiang Y, et al.2015. Sensitivity of barnyard grass weeds to commonly used herbicides in paddy fields[J]. Journal of Nanjing Agricultural University, 38(5): 804-809.) [13] 文马强. 2017. 湖南直播稻田千金子对氰氟草酯的抗性测定及抗性生化机理研究[D]. 硕士学位论文, 湖南农业大学, 导师: 周小毛, pp. 8-10. (Wen M Q.2017. Resistance assessment and biochemical mechanism of Leptochloa chinensis to cyhalofop-butyl in direct-seeded rice fields of Hunan Province[D]. Thesis for M.S., Hunan Agricultural University. Supervisor: Zhou X M, pp. 8-10.) [14] 闫栋, 罗振华, 胡有良, 等. 2017. 不同除草剂对青稞田野燕麦的防除及对青稞生长的影响[J]. 生物技术通报, 33(9): 166-171. (Yan D, Luo Z H, Hu Y L, et al.2017. Effects of different herbicides on wild oat control in highland barley fields and their impacts on barley growth[J]. Biotechnology Bulletin, 33(9): 166-171.) [15] 张丽雅, 李奇, 史珊珊, 等. 2023.稻田稗草对五氟磺草胺的抗性机制及其防治药剂筛选[J]. 中国农业科学, 56(14): 2713-2723. (Zhang L Y, Li Q, Shi S S, et al.2023. Resistance mechanisms of barnyard grass (Echinochloa crusgalli) to penoxsulam and screening of control agents in paddy fields[J]. Scientia Agricultura Sinica, 56(14): 2713-2723.) [16] 赵宁. 2020. 看麦娘对甲基二磺隆代谢抗性相关基因鉴定与功能分析[D]. 博士学位论文, 山东农业大学, 导师: 王金信, pp. 5-11. (Zhao N.2020. Identification and functional analysis of genes related to metabolic resistance to mesosulfuron-methyl in Alopecurus aequalis[D]. Thesis for Ph D., Shandong Agricultural University, Supervisor: Wang J X, pp. 5-11.) [17] Beckie H J, Tardif F J.2012. Herbicide cross resistance in weeds[J]. Crop Protection, 35: 15-28. [18] Catarine M, Ales P, Ratna K, et al.2018. Epigenetic regulation-contribution to herbicide resistance in weeds?[J]. Pest Management Science, 74(2): 275-281. [19] Chang Y N, Zhu C, Jiang J, et al.2020. Epigenetic regulation in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 62(5): 563-580. [20] Gaines T A, Duke S O, Morran S, et al .2020. Mechanisms of evolved herbicide resistance[J]. Journal of Biological Chemistry, 295(30): 10307-10330. [21] Jaenisch R, Bird A.2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nature Genetics, 33(S): 245-254. [22] Kim J M, Sasaki T, Ueda M, et al.2015. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants[J]. Frontiers in Plant Science, 6: 114. [23] Li J Y, Mei Y, Zhang L L, et al.2022. The resistance levels and target-site based resistance mechanisms to glyphosate in Eleusine indica from China[J]. Agronomy, 12(11): 2780. [24] Lonhienne T, Cheng Y, Garcia M D, et al.2022. Structural basis of resistance to herbicides that target acetohydroxyacid synthase[J]. Nature Communications, 13(1): 3368. [25] Mei Y, Xu Y F, Wang S P, et al.2018. Investigation of glyphosate resistance levels and target-site based resistance (TSR) mechanisms in Conyza canadensis (L.) from apple orchards around areas of Bohai seas and Loess Plateau in China[J]. Pesticide Biochemistry and Physiology, 146: 7-12. [26] Norsworthy K J, Ward M S, Shaw R D, et al.2012. Reducing the risks of herbicide resistance: Best management practices and recommendations[J]. Weed Science, 60(sp1): 31-62. [27] Pfaffl M W.2001. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 29(9): e45. [28] Powles B S, Yu Q.2010.Evolution in action: Plants resistant to herbicides[J]. Annual Review of Plant Biology, 61(1): 317-347. [29] Tranel P J.2017. Herbicide-resistance mechanisms: Gene amplification is not just for glyphosate[J]. Pest Management Science, 73(11): 2225-2226. [30] Sen M K, Hamouzova K, Mikulla J, et al.2020. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis[J]. Pest Management Science, 77(4): 2122-2128. [31] Zhao N, Yan Y Y, Wang H Z, et al.2018. Acetolactate synthase overexpression in mesosulfuron-methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.): Reference gene selection and herbicide target gene expression analysis[J]. Journal of Agricultural and Food Chemistry, 66(37): 9624-9634. |
|
|
|