| 
					
						|  |  
    					|  |  
    					| Generation and Application Prospects of Genome Integration-free Livestock Induced Pluripotent Stem Cells |  
						| TENG Ya-Di1, LI Shu-Jing2, YU Wen-Li3, HAN Jian-Yong1,* |  
						| 1 College of Biological Sciences, China Agricultural University, Beijing 100193, China; 2 Hebei Tianhe Beef Cattle Seed lndustry Co., Ltd., Shijiazhuang 050000, China;
 3 Shijiazhuang Tianquan High-Quality Dairy Cattle Breeding Co., Ltd., Shijiazhuang 050000, China
 |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
														| 
													
													    | Abstract  Induced pluripotent stem cells (iPSCs) possess both self-renewal capability and multidirectional differentiation potential. Compared with embryonic stem cells (ESCs), iPSCs are associated with fewer ethical concerns and exhibit broad application prospects in medical and agricultural fields. However, it is limited in its differentiation efficacy and clinical translation by the persistence of residual exogenous reprogramming genes. Although integration-free technologies for generating iPSCs in rodents and humans (Homo sapiens) have become increasingly mature, obtaining integration-free iPSCs lines with stable pluripotency traits in livestock species remains challenging. This review focused on the core strategies for producing integration-free livestock iPSCs (such as integration-free vector delivery, novel reprogramming factor combinations and culture systems). Key regulatory mechanisms underpinning successful cases in large animals like pigs (Sus scrofa domesticus) were specifically analyzed. It further evaluated their translational potential and challenges from the dual perspectives of sustainable agricultural development and biomedical applications, thereby providing insights for advancing research and industrial applications of genome-safe livestock iPSCs. |  
															| Received: 10 June 2025 |  
															|  |  
															| Corresponding Authors:
																*hanjy@cau.edu.cn |  |  |  |  
													
																												  
															| [1] Aravalli R N, Cressman E N K, Steer C J.2012. Hepatic differentiation of porcine induced pluripotent stem cells in vitro[J]. The Veterinary Journal, 194(3): 369-374. [2] Askeland G, Rodinova M, Štufková H, et al.2018. A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies[J]. Disease Models Mechanisms, 11(10): dmm035949.
 [3] Baird A, Lindsay T, Everett A, et al.2018. Osteoblast differentiation of equine induced pluripotent stem cells[J]. Biology Open, 7(5): bio033514.
 [4] Bavin E P, Smith O, Baird A E, et al.2015. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells[J]. Frontiers in Veterinary Science, 2: 55.
 [5] Bressan F F, Bassanezze V, De Figueiredo Pessôa L V, et al.2020. Generation of induced pluripotent stem cells from large domestic animals[J]. Stem Cell Research & Therapy, 11(1): 247.
 [6] Cevallos R R, Rodríguez-Martínez G, Gazarian K.2018. Wnt/β-catenin/TCF pathway is a phase-dependent promoter of colony formation and mesendodermal differentiation during human somatic cell reprogramming[J]. Stem Cells, 36(5): 683-695.
 [7] Chehelgerdi M, Behdarvand D F, Chehelgerdi M, et al.2023. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy[J]. Molecular Cancer, 22(1): 189.
 [8] Chen Y, Li M, Wu Y.2024. The occurrence and development of induced pluripotent stem cells[J]. Frontiers in Genetics, 15: 1389558.
 [9] Clevers H, Nusse R.2012. Wnt/β-catenin signaling and disease[J]. Cell, 149(6): 1192-1205.
 [10] Congras A, Barasc H, Canale-Tabet K, et al.2016. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells[J]. Scientific Reports, 6(1): 27059 .
 [11] Conrad J V, Meyer S, Ramesh P S, et al.2023. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing[J]. Stem Cell Reports, 18(12): 2328-2343.
 [12] Cooney A J, Zhang Y, Wei C, et al.2014. Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system[J]. PLOS ONE, 9(1): e85089.
 [13] Cravero D, Martignani E, Miretti S, et al.2015. Generation of induced pluripotent stem cells from bovine epithelial cells and partial redirection toward a mammary phenotype in vitro[J]. Cellular Reprogramming, 17(3): 211-220.
 [14] Ding S.2025. Therapeutic reprogramming toward regenerative medicine[J]. Chemical Reviews, 125(4): 1805-1822.
 [15] Du X, Feng T, Yu D, et al.2015. Barriers for deriving transgene-free pig iPS cells with episomal vectors[J]. Stem Cells, 33(11): 3228-3238.
 [16] Edwards K L, Moore B M, Ganser T S, et al.2025. Robust generation of photoreceptor-dominant retinal organoids from porcine induced pluripotent stem cells[J]. Stem Cell Reports, 20(4):102425.
 [17] Esteban M A, Xu J, Yang J, et al.2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig[J]. Journal of Biological Chemistry, 284(26): 17634-17640.
 [18] Fan N, Chen J, Shang Z, et al.2013. Piglets cloned from induced pluripotent stem cells[J]. Cell Research, 23(1):162-166.
 [19] Feng B, Jiang J, Kraus P, et al.2009. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb[J]. Nature Cell Biology, 11(2): 197-203.
 [20] Feng L, Chao J, Ye P, et al.2023. Developing hypoimmunogenic human iPSC-derived oligodendrocyte progenitor cells as an off-the-shelf cell therapy for myelin disorders[J]. Advand Science (Weinh), 10(23): e2206910.
 [21] Galow A M, Goldammer T, Hoeflich A.2020. Xenogeneic and stem cell-based therapy for cardiovascular diseases: Genetic engineering of porcine cells and their applications in heart regeneration[J]. International Journal of Molecular Sciences, 21(24): 9686.
 [22] Gao X, Nowak-Imialek M, Chen X, et al.2019. Establishment of porcine and human expanded potential stem cells[J]. Nature Cell Biology, 21(6): 687-699.
 [23] Goszczynski D E, Cheng H, Demyda-Peyrás S, et al.2019a. In vitro breeding: Application of embryonic stem cells to animal production[J]. Biology of Reproduction, 100(4): 885-895.
 [24] Goszczynski D E, Denicol A C and Ross P J.2019b. Gametes from stem cells: Status and applications in animal reproduction[J]. Reproduction in Domestic Animals, 54(S4): 22-31.
 [25] Habekost M, Jørgensen A L, Qvist P, et al.2019. Transcriptomic profiling of porcine pluripotency identifies species-specific reprogramming requirements for culturing iPSCs[J]. Stem Cell Research, 41: 101645.
 [26] Hall V J, Kristensen M, Rasmussen M A, et al.2012. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells[J]. Cellular Reprogramming, 14(3): 204-216.
 [27] Han X, Han J, Ding F, et al.2011. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J]. Cell Research, 21(10): 1509-1512.
 [28] Hanna M, Sahito R G A, Rateb M, et al.2020. Generation of transgene-free induced pluripotent stem cells from cardiac fibroblasts of goat embryos[J]. Journal of Stem Cells Regenerative Medicine, 16(2): 34-43.
 [29] Herrick J R.2019. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms[J]. Biology of Reproduction, 100(5): 1158-1170.
 [30] Jeong J, Kim T H, Kim M, et al.2022. Elimination of reprogramming transgenes facilitates the differentiation of induced pluripotent stem cells into hepatocyte-like cells and hepatic organoids[J]. Biology, 11(4): 493.
 [31] Jiao H, Lee M-S, Sivapatham A, et al.2022. Epigenetic regulation of BAF60A determines efficiency of miniature swine iPSC generation[J]. Scientific Reports, 12(1): 10193.
 [32] Kaji K, Norrby K, Paca A, et al.2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 458(7239): 771-775.
 [33] Kues W A, Herrmann D, Barg-Kues B, et al.2013. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells and Development, 22(1): 124-135.
 [34] Kuijk E W, Chuva De Sousa Lopes S M, Geijsen N, et al.2010. The different shades of mammalian pluripotent stem cells[J]. Human Reproduction Update, 17(2): 254-271.
 [35] Kumar D.2015. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals[J]. World Journal of Stem Cells, 7(2): 315-328.
 [36] Lee J H, Kim T K, Kang M C, et al.2024. Methods to isolate muscle stem cells for cell-based cultured meat production: A review[J]. Animals, 14(5): 819.
 [37] Lee J M, Lee C Y, Seol B, et al.2025. Tracing genomic instability in induced mesenchymal stromal cell manufacture: An integration-free transfection approach[J]. Experimental and Molecular Medicine, 57(4): 900-909.
 [38] Lee M, Ha J, Son Y S, et al.2019. Efficient exogenous DNA-free reprogramming with suicide gene vectors[J]. Experimental and Molecular Medicine, 51(7): 1-12.
 [39] Li M, Belmonte J C I.2012. No factor left behind: Generation of transgene-free induced pluripotent stem cells[J]. American Journal of Stem Cells, 1(1): 75-80.
 [40] Liu H, Zhu F, Yong J, et al.2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 3(6): 587-590.
 [41] Liu M, Zhao L, Wang Z, et al.2021. Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition[J]. Frontiers in Cell and Developmental Biology, 9: 785055.
 [42] Liu N, Lu M, Tian X, et al.2007. Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells[J]. Journal of Cellular Physiology, 211(2):279-286.
 [43] Luo J, Qin L, Kural M H, et al.2017. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering[J]. Biomaterials, 147: 116-132.
 [44] Ma Y, Yu T, Cai Y, et al.2018. Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines[J]. Cell Death Discovery, 4(1): 21.
 [45] Maekawa M, Yamaguchi K, Nakamura T, et al.2011. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1[J]. Nature, 474(7350): 225-229.
 [46] Maherali N, Sridharan R, Xie W, et al.2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution[J]. Cell Stem Cell, 1(1): 55-70.
 [47] Marson A, Foreman R, Chevalier B, et al.2008. Wnt signaling promotes reprogramming of somatic cells to pluripotency[J]. Cell Stem Cell, 3(2): 132-135.
 [48] Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C.2021. iPSC Therapy for myocardial infarction in large animal models: Land of hope and dreams[J]. Biomedicines, 9(12): 1836.
 [49] Mcgonigle P, Ruggeri B.2014. Animal models of human disease: Challenges in enabling translation[J]. Biochemical Pharmacology, 87(1): 162-171.
 [50] Moritz M S, Verbruggen S E, Post M J.2015. Alternatives for large-scale production of cultured beef: A review[J]. Journal of Integrative Agriculture, 14(2): 208-216.
 [51] Nishikawa S I, Goldstein R A, Nierras C R.2008. The promise of human induced pluripotent stem cells for research and therapy[J]. Nature Reviews Molecular Cell Biology, 9(9): 725-729.
 [52] Ogorevc J, Orehek S, Dovč P.2016. Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species[J]. Journal of Animal Science and Biotechnology, 7(1): 10.
 [53] Petkov S, Hyttel P, Niemann H.2014. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells[J]. Cellular Reprogramming, 16(4): 235-240.
 [54] Prather R S.2013. Pig genomics for biomedicine[J]. Nature Biotechnology, 31(2): 122-123.
 [55] Recchia K, Wathikthinnakon M, Bressan F F, et al.2025. Generation of bovine iPSCs from fetal fibroblasts for in vitro myogenesis and cultured meat[J]. Frontiers in Nutrition, 12: 1562981.
 [56] Shi Y, Inoue H, Wu J C, et al.2017. Induced pluripotent stem cell technology: A decade of progress[J]. Nature Reviews Drug Discovery, 16(2): 115-130.
 [57] Shim J, Ko N, Kim H-J, et al.2021. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs[J]. Transgenic Research, 30(5): 619-634.
 [58] Steinfeld H, Gerber P, Wassenaar T D, et al.2006. Livestock's Long Shadow: Environmental Issues and Options[M]. Rome: Food and Agriculture Organization of the United Nations, pp. 271-272.
 [59] Su Y, Zhu J, Salman S, et al.2020. Induced pluripotent stem cells from farm animals[J]. Journal of Animal Science, 98(11): skaa343.
 [60] Sun Y, Su J, Wang X, et al.2023. Patient-specific iPSC-derived cardiomyocytes reveal variable phenotypic severity of Brugada syndrome[J]. EBioMedicine, 95:104741.
 [61] Takahashi K, Tanabe K, Ohnuki M, et al.2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 131(5): 861-872.
 [62] Takahashi K, Yamanaka S.2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 126(4): 663-676.
 [63] Theunissen T W, Jaenisch R.2014. Molecular control of induced pluripotency[J]. Cell Stem Cell, 14(6): 720-734.
 [64] Tsakiridis A, Huang Y, Blin G, et al.2014. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors[J]. Development, 141(6): 1209-1221.
 [65] Tsubooka N, Ichisaka T, Okita K, et al.2009. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts[J]. Genes to Cells, 14(6): 683-694.
 [66] Verma R, Lee Y, Salamone D F.2022. iPSC technology: An innovative tool for developing clean meat, livestock, and frozen ark[J]. Animals, 12(22): 3187.
 [67] Wang Y, Chen G, Pan D, et al.2024. Pig-to-human kidney xenotransplants using genetically modified minipigs[J]. Cell Reports Medicine, 5(10): 101744.
 [68] Wang Y, Peng F, Yang Z, et al.2025. A rapid chemical reprogramming system to generate human pluripotent stem cells[J]. Nature Chemical Biology, 21(7): 1030-1038
 [69] Weinberger L, Ayyash M, Novershtern N, et al.2016. Dynamic stem cell states: Naive to primed pluripotency in rodents and humans[J]. Nature Reviews Molecular Cell Biology, 17(3): 155-169.
 [70] Wernersson R, Schierup M H, Jørgensen F G, et al.2005. Pigs in sequence space: A 0.66 X coverage pig genome survey based on shotgun sequencing[J]. BMC Genomics, 6(1): 1-7.
 [71] Whitworth D J, Ovchinnikov D A, Wolvetang E J.2012. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts[J]. Stem Cells Development, 21(12): 2288-2297.
 [72] Wu J, Greely H T, Jaenisch R, et al.2016. Stem cells and interspecies chimaeras[J]. Nature, 540(7631): 51-59.
 [73] Wu Q, Zhang W, Pei Y, et al.2015. Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions[J]. PLOS ONE, 10(4): e0124562.
 [74] Wu R, Liu Y, Zhao Y, et al.2019. m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner[J]. Cell Death & Disease, 10(3): 171.
 [75] Yang X C, Wu X L, Li W H, et al.2022. OCT6 inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation[J]. Zoological Research, 43(6): 911-922.
 [76] Yoshimatsu S, Nakajima M, Iguchi A, et al.2021. Non-viral induction of transgene-free iPSCs from somatic fibroblasts of multiple mammalian species[J]. Stem Cell Reports, 16(4): 754-770.
 [77] Yu J, Vodyanik M A, Smuga-Otto K, et al.2007. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 318(5858): 1917-1920.
 [78] Yusa K, Rashid S T, Strick-Marchand H, et al.2011. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells[J]. Nature, 478(7369): 391-394.
 [79] Zhang R, Yu S, Shen Q, et al.2021. AXIN2 reduces the survival of porcine induced pluripotent stem cells(piPSCs)[J]. International Journal of Molecular Sciences, 22(23): 12954.
 [80] Zhang S, Guo Y, Cui Y, et al.2015. Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition[J]. Stem Cell Reviews Reports, 11: 24-38.
 [81] Zhang Z, Li W, Ren X, et al.2025. Mitigating cellular dysfunction through contaminant reduction in synthetic circRNA for high-efficiency mRNA-based cell reprogramming[J]. Advanced Science, 12(16): e2416629.
 [82] Zhao Y, Yin X, Qin H, et al.2008. Two supporting factors greatly improve the efficiency of human iPSC generation[J]. Cell Stem Cell, 3(5): 475-479.
 [83] Zhou H, Wu S, Joo J Y, et al.2009. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 4(5): 381-384.
 [84] Zhou W, Freed C R.2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells[J]. Stem Cells, 27(11): 2667-2674.
 [85] Zhu Q, Wang F, Gao D, et al.2023. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition[J]. Cell Proliferation, 56(11): e13487.
 |  
											 
											 |  |  |