|
|
Correlation Analysis Between IGF2R Gene Polymorphisms and Growth Traits in Yak (Bos grunniens) |
LYU Cai-Ling1,2, NAN Guo-Xiong1, WANG Deng-Zhe1, LI Yong-Qin3, SHEN Xiu-Ying1, PENG Wei1, XU Shang-Rong1, ZHANG Jun1,* |
1 Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining 810016, China; 2 Animal Husbandry and Veterinary Station of Gangou Township, Minhe Hui and Tu Autonomous County, Haidong City, Qinghai Province, Minhe 810800, China; 3 Animal Husbandry and Veterinary Station Henan Mongolian Autonomous County Huangnan Tibetan Autonomous Prefecture Qinghai Province, Henan 811500, China |
|
|
Abstract The insulin-like growth factor 2 receptor (IGF2R) plays a crucial role in physiological processes such as regulating animal growth and development and promoting protein synthesis. To explore the correlation between IGF2R gene polymorphism and growth traits in yak (Bos grunniens). In this study, with 336 individuals from Plateau yak, Huanhu and Xueduo yak in Qinghai province, the SNPs sites were screened by DNA mixed pool sequencing, detected the SNP sites of yak IGF2R gene by direct sequencing, and analyzed the association with growth traits. The results showed that 2 SNPs were screened on the yak IGF2R gene, namely g.96261388T>C (intron 20) and g.96292456A>G (exon 43). The g.96261388T>C locus detected only TT and TC genotypes in 3 yak populations. Three genotypes of AA, AG and GG were detected at g.96292456A>G sites. Analysis of genetic polymorphisms showed that g.96261388T>C and g.96292456A>G met the Hardy-Weinberg equilibrium adaptability test in 3 yak populations (P>0.05). The results of association analysis showed that chest circumference and tube circumference of Xueduo yak in TC genotype at g.96261388T>C were significantly better than TT genotype; In the g.96292456A>G locus of Plateau yaks, the body length and cannon circumference of individuals with the AA genotype were significantly better than those with the GG genotype (P<0.05); In Huanhu yaks, the body height, body length, chest circumference and cannon circumference of individuals with the GG genotype were significantly better than those with the AG genotype (P<0.05). Therefore, the IGF2R genes g.96261388T>C and g.96292456A>G sites were significantly associated with partial yak growth traits, which could be used as molecular markers for yak growth trait breeding. This study provides theoretical basis for yak breeding work.
|
Received: 22 October 2024
|
|
Corresponding Authors:
*zhangjunxn2003@163.com
|
|
|
|
[1] 毕亚珍, 尚明玉, 熊金珂, 等. 2023. 湖羊SRP68基因多态性及其与生长性状的关联分析[J]. 中国畜牧兽医, 50(8): 3189-3198. (Bi Y Z, Shang M Y, Xiong J K, et al.2023. SRP68 gene polymorphisms and their association with growth traits[J]. Animal Husbandry and Veterinary Medicine, 50(08): 3189-3198.) [2] 迟志娇, 澈力木格, 成功, 等. 2022. 秦川牛FABP4, FASN和 TCAP基因多态性位点与生长和胴体性状的关联性分析[J]. 农业生物技术学报, 30(8): 1488-1498. (Chi Z J, Che L M G, Cheng G, et al.2022. Analysis of the association of FABP4, FASN and TCAP gene polymorphism loci with growth and carcass traits in Qinchuan cattle[J]. Journal of Agricultural Biotechnology, 30(8): 1488-1498.) [3] 黄纯, 阎萍, 梁春年, 等. 2023. 中国牦牛种业现状与发展方向[J]. 中国畜禽种业, 19(7): 121-127. (Huang C, Yan P, Liang C N, et al.2023.Current situation and development direction of yak seed industry in China[J]. China Livestock and Poultry Seed Industry, 19(07): 121-127.) [4] 贾功雪, 丁路明, 徐尚荣, 等. 2020. 青藏高原牦牛遗传资源保护和利用: 问题与展望[J]. 生态学报, 40(18): 6314-6323. (Jia G X, Ding L M, Xu S R, et al.2020. Protection and utilization of yak genetic resources in the Qinghai-Tibet Plateau: Problems and prospects[J]. Journal of Ecology, 40(18): 6314-6323.) [5] 蓝贤勇. 2004. 西农萨能奶山羊经济性状的DNA分子标记及5个山羊品种DNA多态性研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 陈宏, pp. 24-25. (Lan X Y, 2004. Research on DNA molecular marker for economic traits in Xinong Saanen dairy goat and polymorphic DNA of five goat breeds[D]. Thesis for M. S., Northwest A & F University, Supervisor: Chen H, pp. 24-25.) [6] 李源. 2010. 京海黄鸡IGF2, IGF2R基因多态性及其与生产性能的相关性研究[D]. 硕士学位论文, 扬州大学, 导师: 王金玉, pp. 55-56. (Li Y, 2010. Jinghai Yellow Chicken IGF2 and IGF2R gene polymorphisms and their correlation with production performance[D]. Thesis for M.S., Yangzhou University, Supervisor: Wang J Y, pp. 55-56.) [7] 李文君. 2023. 基于全基因组重测序对保山猪长纯合片段(ROH)的研究[D]. 硕士学位论文, 云南农业大学, 导师: 赵桂英; 龚绍荣, pp. 47-48. (Li W J.2023. Study on long homozygous fragments (ROH) of Baoshan pigs based on whole genome resequencing [D]. Thesis for M. S., Yunnan Agricultural University, Supervisor: Zhao G Y, Gong S R, pp. 47-48.) [8] 刘宇, 肖成, 金海国, 等. 2023. 沃金黑牛GPR41基因多态性及其与不同阶段生长性状的相关性分析[J]. 中国牛业科学, 48(6): 28-34. (Liu Y, Xiao C, Jin H G, et al.2022. Polymorphism and their correlation with growth traits at different stages[J]. China Cattle Science, 48(06): 28-34.) [9] 毛圆辉. 翻译过程中mRNA二级结构的功能研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 陶士珩, pp. 7-9. (Mao Y H.2015. Functional study of mRNA secondary structure during translation [D]. Thesis for M. S., Northwest A & F University, Supervisor: Tao S H, pp. 7-9.) [10] 孟庆辉, 陈永杏, 董红敏, 等. 2017. 牦牛分布特点及其种群数量[J]. 家畜生态学报, 38(3): 80-85. (Meng Q H, Cheng Y X, Dong H M, et al.2017. Yak distribution characteristics and their population size[J]. Journal of Livestock Ecology, 38(03): 80-85.) [11] 强浩. 2022. 绵羊IGF1R, IGF2R基因的多态性及其与生长性状的关联分析[D]. 硕士学位论文, 宁夏大学, 导师: 王登侦, pp. 70-71. (Qiang H.2022. Polymorphisms in the IGF1R and IGF2R genes in sheep and their association analysis with growth traits[D]. Thesis for M.S. NingXia University, Supervisor: Wang D Z, pp: 70-71) [12] 杨伟杰, 吴慧, 张振兴, 等. 2022. 海南黄牛 IGF2R 基因单核苷酸多态性及其生物信息学分析[J]. 南方农业学报, 53(12): 3520-3528. (Yang W J, M, WU H, Zhang Z X, et al.2022. Single nucleotide polymorphism of IGF2R gene[J]. Southern Journal of Agriculture, 53(12): 3520-3528.) [13] 占思远, 丁雪, 仲涛, 等. 2019. IGF1R和IGF2R在南江黄羊不同组织和肌细胞中的表达模式比较[J]. 畜牧兽医学报, 50(04): 701-711. (Zhan S Y, Ding X, Zhong T, et al.2019. Comparison of expression patterns of IGF1R and IGF2R in different tissues and myocytes of Nanjiang yellow sheep[J]. Journal of Animal Husbandry and Veterinary Medicine, 50(04): 701-711.) [14] 张珉, 黄波, 张玲,等. 2014. IGF2R 在非小细胞肺癌中的表达及与肿瘤进展的相关性研究[J]. 中国当代医药, 21(12): 12-14. (Zhang M, Huang B, Zhang L, et al.2014. Expression of IGF2R in non-small cell lung cancer and correlation with tumor progression[J]. Chinese Contemporary Medicine, 21(12): 12-14.) [15] 钟金城, 王会, 柴志欣, 等. 2022. 牦牛种质资源挖掘与创新利用[J]. 中国畜禽种业, 18(10): 22-29. (Zhong J C, Wang H, Chai Z H, et al.2022. Mining and innovative utilization of yak germplasm resources[J]. China Livestock and Poultry Seed Industry, 18(10): 22-29.) [16] Berkowicz E, Magee D, Berry D, et al.2012. Single nucleotide polymorphisms in the imprinted bovine insulin‐like growth factor 2 receptor gene (IGF2R) are associated with body size traits in Irish Holstein‐Friesian cattle[J]. Animal Genetics, 43(1): 81-87. [17] Chen Z, Ge Y, Kang J X.2004. Down-regulation of the M6P/IGF-II receptor increases cell proliferation and reduces apoptosis in neonatal rat cardiac myocytes[J]. BMC Cell Biology, 5: 1-12. [18] Dong Z J, Su S Y, Zhu W B, et al.2015. Polymorphism analysis of the intron one of insulin-like growth factor 2 receptor gene (IGF2R) in FFRC strain common carp (Cyprinus carpio L.) and its relationship with growth performance[J]. Genetics and Molecular Research, 14(1): 407-418. [19] Dux M, Muranowicz M, Siadkowska E, et al.2018. Association of SNP and STR polymorphisms of insulin-like growth factor 2 receptor (IGF2R) gene with milk traits in Holstein-Friesian cows[J]. Journal of Dairy Research, 85(2): 138-141. [20] El-Magd M A, Abo-al-ela H G, El-Nahas a, et al.2014. Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo[J]. Gene, 540(2): 133-139. [21] Körner C, Nürnberg B, Uhde M, et al.1995. Mannose 6-Phosphate/Insulin-like Growth Factor Ⅱ Receptor Fails to Interact with G-proteins: Analysis of mutant cytoplasmic receptor domains[J]. Journal of Biological Chemistry, 270(1): 287-295. [22] Meuwissen T, Hayes B, Goddard M.2016. Genomic selection: A paradigm shift in animal breeding[J]. Animal Frontiers, 6: 6-14. [23] Richards M P, Poch S M, Mcmurtry J P.2005. Expression of insulin-like growth factor system genes in liver and brain tissue during embryonic and post-hatch development of the turkey[J]. Comparative Biochemistry Physiology Part A: Molecular Integrative Physiology, 141(1): 76-86. [24] Wylie A A, Pulford D J, McVie-Wylie A J, et al.2023. Tissue-specific inactivation of murine M6P/IGF2R[J]. The American Journal of Pathology, 162(1): 321-328. |
[1] |
YU Zhi-Peng, DU Pei-Yan, ZHANG He-Cheng, QIAN Wen-Jie, YAO Ying, LI Liu-Yang, YE Guo-Rong, LA Ping, CUI Yan, YU Si-Jiu, FAN Jiang-Feng. Effects of Wnt/β-catenin Signaling Pathway on the Secretion of Estradiol and Progesterone in Yak (Bos grunniens) Follicular Granulosa Cells[J]. 农业生物技术学报, 2025, 33(9): 1973-1983. |
|
|
|
|