|
|
Effects of Wnt/β-catenin Signaling Pathway on the Secretion of Estradiol and Progesterone in Yak (Bos grunniens) Follicular Granulosa Cells |
YU Zhi-Peng1, DU Pei-Yan1, ZHANG He-Cheng1, QIAN Wen-Jie1, YAO Ying1, LI Liu-Yang1, YE Guo-Rong1, LA Ping1, CUI Yan1, YU Si-Jiu1,2, FAN Jiang-Feng1,2,* |
1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu LiveStock Embryo Engineering Technology Innovation Center, Lanzhou 730070, China |
|
|
Abstract The classical Wnt/β-catenin signaling pathway is highly conserved and widely present in a variety of organisms and cells, and is involved in regulating the growth and development of follicular granulosa cells. To investigate the effects of Wnt/β-catenin signaling pathway on the secretion of estradiol (E2) and progesterone (P4) in yak (Bos grunniens) follicular granulocyte cells. Cultured yak follicle granulocytes were treated with exogenous Wnt/β-catenin signaling pathway agonist SKL2001. The cell proliferation was detected by Cell Counting Kit-8 (CCK-8), and the contents of estradiol and progesterone in granulocyte supernatant were detected by ELISA kit. qRT-PCR and Western Blot were used to detect the expression levels of genes related to cell proliferation, Wnt/β-catenin signaling pathway and steroid hormone synthesis. The results showed that exogenous SKL2001 could up-regulate the expression of beta-catenin (beta-catenin, β-catenin) and axin-related protein 2 (Axin2), the key factors of Wnt/β-catenin signaling pathway, but had no effect on the expression of glycogen synthase kinase 3β (GSK3β ) in yak follicular granulocyte in the range of 2.5~10.0 µmol/mL. SKL2001 significantly decreased the expression of proliferation-related genes proliferating cell nuclear antigen (PCNA), cyclin D2 (CCND2), cell division cycle 42 (CDC42) in granulosa cells and decreased the proliferative activity of granulosa cells. The addition of SKL2001 could decrease the content of estradiol and increase the content of progesterone in culture medium. It inhibited the expression of key genes of estradiol synthesis cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 17A1 (CYP17A1) in granulosus cells, and promoted the expression of key genes of progesterone synthesis cytochrome P450 family 11 subfamily A member 1 (CYP11A1), hydroxy-Δ5-steroid dehydrogenase-3β-androsten-Δ5-diol dehydrogenase type 1 (HSD3B1) and steroidogenic acute regulatory protein (StAR). These results suggested that SKL2001, after activating Wnt/β-catenin signaling pathway, inhibited the proliferation of follicular granulosa cells and promoted the transformation of follicular granulosa cells from estrogen-secreting type to progesterone secreting type by regulating the content of key enzymes of steroid hormone synthesis, which might be a potential mechanism of follicular atresia and luteinization in yaks. This study accumulates basic data for further understanding the function of follicular granulosa cells and the regulation mechanism of follicular development in yaks.
|
Received: 25 October 2024
|
|
Corresponding Authors:
*fanjf@gsau.edu.cn
|
|
|
|
[1] 何函. 2016. MIF、p-AKT、(p)-GSK3β在肉鸡心脏中的分布与表达[D]. 硕士学位论文, 山西农业大学, 导师: 王文魁. pp. 28-31. (He H.2016. Distribution and expression of MIF, p-AKT and (p)-GSK3β in broiler hearts[D]. Thesis for M. S., Shanxi Agricultural University, Supervisor: Wang W K, pp. 28-31.) [2] 刘杰, 许香萍, 邓铭, 等. 2023. miR-144-5p靶向WNT5a对山羊卵巢颗粒细胞增殖、凋亡的影响[J]. 畜牧兽医学报, 54(6): 2421-2435. (Liu J, Xu X P, Deng M, et al.2023. Effects of miR-144-5p targeting WNT5a on proliferation and apoptosis of goat ovarian granulosus cells[J]. Journal of Animal Science and Veterinary Medicine, 54(6): 2421-2435.) [3] 卢宏全, 黄国定, 林明利, 等. 2024. DEPDC1-AS1对非小细胞肺癌细胞侵袭迁移和Wnt/β-catenin信号通路的影响[J/OL]. 临床肿瘤学杂志, 1-6. (Lu H Q, Huang G D, Lin M L, et al.2024. Effects of DEPDC1-AS1 on invasion and migration of non-small cell lung cancer cells and Wnt/β-catenin signaling pathway[J/OL]. Journal of Clinical Oncology, 1-6.) [4] 施珏平, 滕鸿琦, 肖爱平, 等. 2011. 经典WNT信号通路与哺乳动物肺器官发育[J]. 生命科学, 23(12): 1283-1291. (Shi J P, Teng H Q, Xiao A P, et al.2011. Classical WNT signaling pathway and lung organ development in mammals[J]. Life Sciences, 23(12): 1283-1291.) [5] 孙智娜, 何秀琴, 拉毛卓玛. 2024. 尿石素A调节Wnt/β-catenin信号通路对非小细胞肺癌细胞增殖、迁移、侵袭和上皮间质转化的影响及其作用机制[J]. 中国老年学杂志, 44(15): 3712-3717. (Sun Z N, He X Q, La M Z M.2024. Effects of urolixin A regulating Wnt/β-catenin signaling pathway on proliferation, migration, invasion and epithelial mesenchymal transformation of non-small cell lung cancer cells and its mechanism[J]. Chinese Journal of Gerontology, 44(15): 3712-3717.) [6] 余庆. 2021. Wnt/β-Catenin信号通路的激活或抑制对水牛颗粒细胞雌二醇和孕酮合成的影响[D]. 硕士学位论文, 广西大学, 导师: 陆凤花. pp. 24-29. (Yu Q.2021. Effects of activation or inhibition of Wnt/β-Catenin signaling pathway on estradiol and progesterone synthesis in buffalo granule cells[D]. Thesis for M.S., Guangxi University, Supervisor: Lu F H, pp. 24-29.) [7] 张金璧, 林飞, 潘增祥, 等. 2013. 猪不同程度闭锁卵泡判定方法的比较研究[J]. 南京农业大学学报, 36(01): 115-119. (Zhang J B, Lin F, Pan Z X, et al.2013. Comparative study on determination methods of different degrees of atretic follicles in pigs[J]. Journal of Nanjing Agricultural University, 36(01): 115-119.) [8] 赵瑜. 2019. 视黄酸在维持小鼠原始卵泡库稳定中的作用及机制研究[D]. 博士学位论文, 中国农业大学, 导师: 张美佳. pp. 71-74. (Zhao Y.2019. The role and mechanism of retinoic acid in maintaining the stability of primitive follicular reservoir in mice [D]. Thesis for Ph. D., China Agricultural University, Supervisor: Zhang M J, pp. 71-74.) [9] 周虚. 2015. 动物繁殖学[M]. 科学出版社, 北京. pp. 326-374. (Zhou X.2015. Animal Reproduction[M]. Science Press, Beijing, pp. 326-374.) [10] Boyer A, Goff A K, Boerboom D.2010a. WNT signaling in ovarian follicle biology and tumorigenesis[J]. Trends in Endocrinology and Metabolism, 21(1): 25-32. [11] Boyer A, Lapointe E, Zheng X, et al.2010b.WNT4 is required for normal ovarian follicle development and female fertility[J]. FASEB Journal, 24(8): 3010-3025. [12] Chen Z, Wang J N, Ma J Y, et al.2022. Transcriptome and proteome analysis of pregnancy and postpartum anoestrus ovaries in yak[J]. Journal of Veterinary Science, 23(1): e3. [13] Chou C H, Chen M J.2018. The Effect of steroid hormones on ovarian follicle development[J]. Vitamins and Hormones, 107: 155-175. [14] Cui J, Shen Y, Li R.2013. Estrogen synthesis and signaling pathways during aging: From periphery to brain[J]. Trends in Molecular Medicine, 19(3): 197-209. [15] Daya S.2009. Luteal support: Progestogens for pregnancy protection[J]. Maturitas, 65(Suppl 1): S29-34. [16] Ferranti E M, Aloqaily B H, Gifford C A, et al.2022. Hernandez gifford,effects of lipopolysaccharide on beta-catenin, aromatase, and estrogen production in bovine granulosa cells in vivo and in vitro[J]. Domestic Animal Endocrinology Volume, 7(8): 06652. [17] Guo X, Chen Y, Hong T, et al.2018. Induced pluripotent stem cell-derived conditional medium promotes Leydig cell anti-apoptosis and proliferation via autophagy and Wnt/β-catenin pathway[J]. Journal of Cell and Molecular Medicine, 22(7): 3614-3626. [18] Gwak J, Hwang S, Park H S.et al.2012. Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation[J]. Cell Research, 22: 237-247. [19] Hilker R E, Pan B, Zhan X S, et al.2021. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells[J]. Joural of Molecular Endocrinology, 68(1): 11-22. [20] Hoogeboom D, Essers M A, Polderman P E, et al.2008. Interaction of Foxo with beta-catenin inhibits beta-catenin/T cell factor activity[J]. Journal of Biological Chemistry,283(14): 9224-9230. [21] Hsieh M, Johnson M A, Greenberg N M, et al.2002. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary[J]. Endocrinology, 143(3): 898-908. [22] Konsavage W M, Kyler S L, Rennoll S A, et al.2012. Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells[J]. Journal of Biological Chemistry, 287(15): 11730-11739. [23] Kumariya S, Ubba V, Jha R K, et al.2021. Autophagy in ovary and polycystic ovary syndrome: Role, dispute and future perspective[J]. Autophagy, 17(10): 2706-2733. [24] Lee S G, Kim J Y, Chung J Y, et al.2013. Bisphenol A exposure during adulthoodcauses augmentation of follicular atresia and luteal regression by decreasing 17β-estradiol synthesis via downregulation of aromatase in rat ovary[J]. Environment Health Perspect, 121(6): 663-669. [25] Lehman M N, Coolen L M, Goodman R L.2010. Minireview: Kisspeptin/neu rokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of gonadotropin-releasing hormone secretion[J]. Endocrinology, 151(8): 3479-3489. [26] Li H, Huang X, Chang X W, et al.2020. S100-A9 protein in exosomes derived from follicular promotes inflammation via activation of NF-κB pathway in polycystic ovary syndrome[J]. Journal of Cellular and Molecular Medicine, 24(1): 114-125. [27] Macklon N S, Fauser B.1999. Aspects of ovarian follicle development throug hout life[J]. Hormone Research, 52(4): 161-170. [28] Nishimoto H, Hamano S, Hill G A, et al.2009. Classification of bovine follicles based on the concentrations of steroids, glucose and lactate in follicular fluid and the status of accompanying follicles[J]. Journal of Reproduction and Development, 55: 219-224. [29] Robker R L, Richards J S.1998. Hormone-induced proliferation anddifferentiation of granulosa cells: A coordinated balance of the cell cycleregulators cyclin D2 and p27Kip1[J]. Molecular Endocrinology (Boltimore, Md.), 12(7): 924-940. [30] Strzalka W, Ziemienowicz A.2011. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation[J]. Annals of Botany, 107(7): 1127-1140. [31] Telfer E E, Grosbois J, Odey Y L, et al.2023. Making a good egg: Human oocyte health, aging, and in vitro development[J]. Physiological Reviews, 103(4): 2623-2677. [32] Wang L, Chen Y, Wu S, et al.2021. miR-135a suppresses granulosa cell growthby targeting Tgfbr1 and Ccnd2 during folliculogenesis in mice[J]. Cells, 10(8): 372-340. [33] Xu R, Qin N, Xu X, et al.2018. Inhibitory effect of SLIT2 on granulosa cellproliferation mediated by the CDC42-PAKs-ERK1/2 MAPK pathway in theprehierarchical follicles of the chicken ovary[J]. Scientific Reports, 8(1): 9168. [34] Zhang C P, Yang J L, Zhang J, et al.2011. Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation[J]. Endocrinology, 152(6): 2437-2447. [35] Zhao M, Nakada Y, Wei Y, et al.2021. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes formyocardial repair in a swine model of myocardial infarction[J]. Circulation, 144(3): 210-228. |
|
|
|