|
|
Effect of Strigolactones on Cotton Fiber Development and Analysis of Expression Characteristics of D27 Gene |
ZHOU Qiang1, LI Ying1, SUN Guo-Qing2, CHEN Qin1, CAI Yong-Sheng1, CHEN Quan-Jia1, QU Yan-Ying1, ZHENG Kai1,* |
1 College of Agriculture/Key Laboratory of Crop Biology Breeding, Xinjiang Agricultural University, Urumqi 830052, China; 2 Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract As a plant hormone, strigolactones has a regulatory effect on cotton fiber development. This study utilized cotton (Gossypium) ovule culture technology to optimize the ovule culture system. 15 μmol/L strigolactone (GR24) and 0.1, 1, and 5 μmol/L Tis108 were added to treat cotton ovules to screen for Tis108 concentrations that inhibit fiber elongation and explore the effects of strigolactone and its inhibitors on ovule quality and fiber length; Using qRT-PCR to analyze the expression of the β-carotene isomerase D27 gene (D27) in cotton fibers on 5, 10, 15, 20, 25, and 30 d, which was involved in the synthesis pathway of lactone. The results showed that: 1) In 30 d cotton fibers, compared with the control group, treatment with 15 μmol/L GR24 increased cotton fiber length by 2.07 mm, and treatment with 5 μmol/L Tis108 decreased cotton fiber length by 2.22 mm; 2) Compared with the control group, the 6 Gossypium hirsutum D27 gene members showed higher expression levels and differential expression in fibers treated with GR24 on 5 d at different stages; 3) Fibers from 6 periods (5, 10, 15, 20, 25, and 30 d) in the island cotton field environment, 6 GbD27 genes showed different expression characteristics among the fibers. The expression of GbD27-4 gene was more significant in the fibers on 5 and 10 d. This study preliminarily explored the in vitro culture conditions of cotton ovules, screened suitable concentrations of strigolactones inhibitors, and found that the D27 gene was significantly expressed in the early stage of fiber development, provides a theoretical basis for further research on the molecular biology function of cotton D27 gene.
|
Received: 21 November 2024
|
|
Corresponding Authors:
*zhengkai555@126.com
|
|
|
|
[1] 陈敏氡, 王彬, 李永平, 等. 2022. 西葫芦CCD基因家族鉴定及其在果实发育中的表达[J]. 西北植物学报, 42(07): 1124-1132. (Chen M D, Wang B, Li Y P, et al.2022. Identification of CCD gene family in Cucurbita pepo and its expression in fruit development[J]. Acta Botanica Boreali Occidentalia Sinica, 42(07): 1124-1132.) [2] 贾婷婷, 竺丽萍, 肖光辉, 等. 2022. 棉花SMXL基因家族的全基因组分析及表达分析[J]. 中国科学: 生命科学, 52(12): 1868-1882. (Jia T T, Zhu L P, Xiao G H, et al.2022. Whole genome analysis and expression analysis of cotton SMXL gene family[J]. Chinese Science: Life Sciences, 52(12): 1868-1882.) [3] 刘松江, 龚文芳, 孙君灵, 等. 2015. 生长物质对彩色棉胚珠离体培养纤维发育的影响[J]. 中国农业科学, 48(11): 2127-2142. (Liu S J, Gong W F, Sun J L, et al.2015. The effect of growth substances on fiber development in vitro culture of colored cotton ovules[J]. Agricultural Sciences in China, 48(11): 2127-2142.) [4] 马骁, 李魁, 王志敏, 等. 2020. 植物不同类型表皮毛调控模型研究进展[J]. 生物工程学报, 36(10): 2051-2065. (Ma X, Li K, Wang Z M, et al.2020. Research progress on regulation models of different types of plant epidermal hairs[J]. Journal of Bioengineering, 36(10): 2051-2065.) [5] 上官小霞, 曹俊峰, 杨琴莉, 等. 2022. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 34(01): 33-47. (Shangguan X X, Cao J F, Yang Q L, et al.2022. Research progress on molecular mechanism of cotton fiber development[J]. Cotton Science, 34(01): 33-47.) [6] 滕露. 2021. 海岛棉GbHCT基因在纤维发育中的功能分析[D]. 硕士学位论文, 新疆农业大学, 导师: 曲延英, pp .45-51. (Teng L.2021. Functional analysis of GbHCT gene in fiber development of Gossypium barbadense[D]. Thesis for M.S., Xinjiang Agricultural University, Supervisor: Qu Y Y, pp. 45-51.) [7] 滕露, 郑凯, 曲延英, 等. 2021. 海岛棉GbHCT13基因的功能验证[J]. 西北植物学报, 41(09): 1439-1449. (Teng L, Zheng K, Qu Y Y, et al.2021. Functional verification of GbHCT13 gene in Gossypium barbadense[J]. Acta Botanica Boreali Occidentalia Sinica, 41(09): 1439-1449.) [8] 王坤, 朱玉贤. 2022. 武汉大学棉花功能基因组学研究的回溯与展望[J]. 中国科学:生命科学, 52(09): 1407-1415. (Wang K, Zhu Y X.2022. Retrospection and prospects of functional genomics research on cotton at Wuhan university[J]. Chinese Science: Life Sciences, 52(09): 1407-1415.) [9] 王玫, 陈洪伟, 王红利, 等. 2014. 独脚金内酯调控植物分枝的研究进展[J]. 园艺学报, 41(09): 1924-1934. (Wang M, Chen H W, Wang H L, et al.2014. Research progress on the regulation of plant branching by strigolactones[J]. Acta Horticulturae Sinica, 41(09): 1924-1934.) [10] 王晓阳, 彭振, 邢爱双, 等. 2023. 亚洲棉短纤维发育相关长链非编码RNA的鉴定及表达[J]. 中国农业科学, 56(23): 4565-4587. (Wang X Y, Peng Z, Xing A S, et al.2023. Identification and expression of long non-coding RNAs related to short fiber development in Gossypium arboreum[J]. Agricultural Sciences in China, 56(23): 4565-4587.) [11] 吴先美, 李三峰, 胡萍, 等. 2021. 水稻分蘖调控基因HTD3的克隆与功能研究[J]. 中国水稻科学, 35(06): 535-542. (Wu X M, Li S F, Hu P, et al.2021. Cloning and functional study of HTD3, a rice tilling regulation gene[J]. Chinese Journal of Rice Science, 35(06): 535-542.) [12] 吴转娣, 胡鑫, 昝逢刚, 等. 2020. 独脚金内酯的生物合成及其调控[J]. 中国农业大学学报, 25(12): 97-110. (Wu Z D, Hu X, Yao F G, et al.2020. The biosynthesis and regulation of strigolactones[J]. China Agricultural University, 25(12): 97-110.) [13] 吴转娣, 刘新龙, 刘家勇, 等. 2017. 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析[J]. 作物学报, 43(01): 31-41. (Wu Z D, Liu X L, Liu J Y, et al.2017. Cloning and expression analysis of ScD27, a key gene in the biosynthesis of Saccharum officinarum[J]. Acta Agronomica Sinica, 43(01): 31-41.) [14] 向春玲, 陈功, 罗海华, 等. 2021. 陆地棉种子和纤维中非结构性碳水化合物含量的基因型差异及与衣分形成的关系[J]. 江西农业大学学报, 43(03): 522-528. (Xiang C L, Chen G, Luo H H, et al.2021. Genotypic differences in non-structural carbohydrate content in Gossypium hirsutum seeds and fibers and their relationship with coat formation[J]. Journal of Jiangxi Agricultural University, 43(03): 522-528.) [15] 叶春燕, 欧婷, 陈进红, 等. 2013. 培养基、胚龄和激素配比对棉花胚珠离体培养纤维生长发育的影响[J]. 棉花学报, 25(01): 17-23. (Ye C Y, Ou T, Chen J H, et al.2013. The effects of culture medium, embryo age, and hormone ratio on the growth and development of cotton ovule fibers in vitro culture[J]. Cotton Science, 25(01): 17-23.) [16] 张小萌, 刘松江, 龚文芳, 等. 2017. 植物生长调节剂对彩色棉胚珠离体培养纤维发育的影响[J]. 作物学报, 43(05): 763-776. (Zhang X M, Liu S J, Gong W F, et al.2017. The effect of plant growth regulators on fiber development in vitro culture of colored cotton ovules[J]. Acta Agronomica Sinica, 43(05): 763-776.) [17] Abuauf H W, Haider I, Jia K P, et al.2018. The Arabidopsis DWARF27 gene encodes an all-trans-9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency[J]. Plant Science, 277(0): 33-42. [18] Foster T, Ledger S E, Janssen B, et al.2018. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees[J]. Journal of Experimental Botany, 69(9): 2379-2390. [19] Fu X J, Wang J, Shangguan T W, et al.2022. SMXLs regulate seed germination under salinity and drought stress in soybean[J]. Plant Growth Regulation, 96(3): 1-12. [20] Gao J L, Yu M, Zhu S L, et al.2019. Effects of exogenous 24-epibrassinolide and brassinazole on negative gravitropism and tension wood formation in hybrid poplar (Populus deltoids×Populus nigra)[J]. Planta, 249(5): 1449-1463. [21] Gao M, Xu B J, Wang Y H, et al.2020. Quantifying individual and interactive effects of elevated temp-erature and drought stress on cotton yield and fiber quality[J]. Journal of Agronomy and Crop Science, 207(3): 422-436. [22] Li Y J, Liu D Q, Tu L L, et al.2010. Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber[J]. Plant Cell Reports, 29(2): 193-202. [23] Miguel E, Li C S, Perez J, et al.2023. Tomato geranylgeranyl diphosphate synthase isoform is involved in the stress triggered production of diterpenes in leaves and strigolactones in roots[J]. The New Phytologist, 239(6): 2292-2306. [24] Pierce E T, Graham B, Stiff M R, et al.2019. Cultures of Gossypium barbadense cotton ovules offer insights into the microtubule mediated control of fiber cell expansion[J]. Planta, 249(5): 1551-1563. [25] Rehman N U, Abbas F, Imran M, et al.2022. Genome wide analysis of DWARF27 genes in soybean and functional characterization of GmD27c reveals eminent role of strigolactones in rhizobia interacti-on and nodulation in Glycine max[J]. Molecular Biology Reports, 49(6): 5405-5417. [26] Sun H W, Li W Q, Burritt D J, et al.2022. Strigolactones interact with other phytohormones to modulat-e plant root growth and development[J]. The Crop Journal, 10(6): 1517-1527. [27] Sun W J, Gao Z Y, Wang J, et al.2019. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers[J]. The New Phytologist, 222(2): 864-881. [28] Wang L C, Wang G F, Long L, et al.2020. Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions[J]. International Journal of Biological Macromolecules, 163(0): 1301-1313. [29] Wang Y, Li Y, He S P, et al.2023. The transcription factor ERF108 interacts with auxin response factors to mediate cotton fiber secondary cell wall biosynthesis[J]. Plant Cell, 35(11): 4133-4154. [30] Wen Y, He P, Bai X J, et al.2024. Strigolactones modulate cotton fiber elongation and secondary cell wall thickening[J]. Journal of Integrative Agriculture, 23(6): 1850-1863. [31] Xie D W, Li J, Li W, et al.2024. The NAC transcription factor LuNAC61 negatively regulates fiber development in flax (Linum usitatissimum L.)[J]. Journal of Integrative Agriculture, 23(3): 795-805. [32] Xu B, Zhou Z G, Guo L T, et al.2016. Susceptible time window and endurable duration of cotton fiberdevelopment to high temperature stress[J]. Journal of Integrative Agriculture, 16(9): 1936-1945. [33] Xu Y C, Magwanga R O, Cai X Y, et al.2019. Deep transcriptome analysis reveals reactive oxygen species (ROS) network evolution, response to abiotic stress, and regulation of fiber development in cotton[J]. International Journal of Molecular Sciences, 20(8): 1863-1875. [34] Yang L, Tu L L, Ye Z X, et al.2015. A cotton fiber-preferential promoter, pGbEXPA2, is regulated by GA and ABA in Arabidopsis[J]. Plant Cell Reports, 34(9): 1539-1549. [35] Zhang D Y, Chen C, Wang R, et al.2021. Cotton fiber development requires the pentatricopeptide repeatprotein GhIm for splicing of mitochondrial inad7/i mRNA[J]. Genetics, 217(1): 1-17. [36] Zhang Y Z, Tian Z L, Zhu L P, et al.2022. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum)[J]. The Plant Cell, 34(1-2): 4816-4839. [37] Zhao L L, Fang J J, Xing J, et al.2017. Identification and functional analysis of two cotton orthologs MAX2 which control shoot lateral branching[J]. Plant Molecular Biology Reporter, 35(5): 480-490. [38] Zhao T L, Xu X J, Wang M, et al.2019. Identification and profiling of upland cotton microRNAs at fib-er initiation stage under exogenous IAA application[J]. BMC Genomics, 20(1): 1-15. |
[1] |
XIAO Lu-Chen, HE Yi-Han, LIU Chao-Zhong, ZHAO Wen-Jie, TIAN Qian-Song, LIU Han-Ye, ZHAO Cheng-Peng, ZHAO Jin, XIE Ting-Ting. Cloning and Expression Analysis of RhMAX2-like Gene in Rosa hybrida[J]. 农业生物技术学报, 2025, 33(8): 1683-1696. |
|
|
|
|