|
|
Research Progress of Mycorrhizal Fungi on the Remediation of Heavy Metal Contaminated Soil |
DU Yun-Fu1, WU Jin-Hua1, GAO Hai-Jian1, LI Guang-Ping1,3, *, ZHANG Chang-Qing2,* |
1 College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; 2 College of Horticulture and Landscape Architecture, Jinling Institute of Technology, Nanjing 211169, China; 3 Co-innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China |
|
|
Abstract Heavy metal pollution has become a major difficulty in soil environmental problems due to its refractory degradation and accumulation. Mycorrhizal fungi are able to form a reciprocal symbiotic relationship with the host plant, thereby improving the heavy metal resistance of the plant, which conducive to accelerating the vegetation cover of contaminated land, and can hold heavy metals to achieve the reuse of contaminated soil. The detoxification mechanism of heavy metals in host plants by fungi mainly includes structural fixation, nutrient dilution, gene regulation, chelation and auxiliary chelation, and antioxidant. In order to systematically understand the effects of different mycorrhizal fungi (endomycorrhizae and ectomycorrhizae) on hosts under heavy metal stress, the effect and mechanism of mycorrhizal fungi in enhancing the resistance of host plants to heavy metals were reviewed in this article, and future research directions were discussed. This review provides a theoretical reference for the application of mycorrhizal fungi in the remediation of heavy metal-contaminated soil.
|
Received: 21 September 2023
|
|
Corresponding Authors:
* lgp@njfu.edu.cn; zcq@jit.edu.cn
|
|
|
|
[1] 陈保冬, 张莘, 伍松林, 等. 2019. 丛枝菌根影响土壤–植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 38(1): 1-25. (Chen B D, Zhang X, Wu S L, et al.2019. The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum: Underlying mechanisms and ecological implications[J]. Rock and Mineral Analysis, 38(1): 1-25.) [2] 陈世宝, 王萌, 李杉杉, 等. 2019. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 26(6): 35-41. (Chen S B, Wang M, Li S S, et al.2019. Current status of and discussion on farmland heavy metal pollution prevention in China[J], Earth Science Frontiers, 26(6): 35-41.) [3] 陈卫平, 杨阳, 谢天, 等. 2018. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 55(2): 261-272. (Chen W P, Yang Y, Xie T, et al.2018. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 55(2): 261-272.) [4] 黄艺, 李婷, 费颖恒. 2007. 外生菌根真菌对油松幼苗根际土壤重金属赋存的影响[J]. 生态与农村环境学报, 23(3):70-76. (Huang Y, Li T, Fei Y H.2007, Effect of ectomycorrhizal fungi on heavy metal speciation in rhizosphere of Pinus tabulaeformis seedlings[J]. Journal of Ecology and Rural Environment, 23(3): 70-76.) [5] 金小霞. 2022. AMF根外菌丝对铅的吸收转运及固定作用[D]. 硕士学位论文, 西北农林科技大学, 导师: 张好强, pp. 21-38. (Jin X X.2022. Absorption, transport and fixation of Pb by AMF extraradical mycelium[D]. Theis for M.S., Northwest A & F University, Supervisor: Zhang H Q, pp. 21-38.) [6] 李冬琴, 陈桂葵, 郑海, 等. 2015. 镉对两品种玉豆生长和抗氧化酶的影响[J]. 农业环境科学学报, 2015, 34(02): 221-226. (Li D Q, Chen G K, Zheng H, et al.2015. Effects of cadmium on growth and antioxidant enzyme activities of two kidney bean (Phaseolus vulgaris L.) Cultivars[J]. Journal of Agro-Environment Science, 34(02): 221-226.) [7] 苗志加, 孟祥源, 李书缘, 等. 2023. 丛枝菌根真菌修复重金属污染土壤及增强植物耐性研究进展[J]. 农业环境科学学报, 42(02): 252-262. (Miao Z J, Meng X Y, Li S Y, et al.2023. Research progress on arbuscular mycorrhizal fungi (AMF) in remediation of heavy metal contaminated soiland enhancement of plant tolerance[J]. Journal of Agro-Environment Science, 42(02): 252-262.) [8] 王立, 安广楠, 马放, 等. 2014. AMF对镉污染条件下水稻抗逆性及根际固定性的影响[J]. 农业环境科学学报, 33(10): 1882-1889. (Wang L, An G N, Ma F, et al.2014. Effects of arbuscular mycorrhizal fungi on cadmium tolerance and rhizospheric fixation of rice[J]. Journal of Agro-Environmental Science, 33(10): 1882-1889.) [9] 徐建明, 孟俊, 刘杏梅, 等. 2018. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 33(02): 153-159. (Xu J M, Meng J, Liu X M, et al.2018. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of the Chinese Academy of Sciences, 33(02): 153-159.) [10] 闫潇, 刘兴宇, 张明江, 等. 2019. 分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复[J].微生物学通报, 46(08): 1907-1916. (Yan X, Liu X Y, Zhang M J, et al., 2019. Remediation of heavy metal pollution by sulfate reducing bacteria (SRB) isolated from activated sludge in lead-zinc smelter slag[J]. Microbiology China, 46(08): 1907-1916.) [11] 曾志良, 黄钰洁, 吴春标, 等. 2023. 石碌铁矿排土场边坡重金属污染土壤修复植物筛选[J/OL]. 热带农业科学: 1-10. (Zeng Z L, Huang Y J, Wu C B, et al.2023. Screening of dominant plants for phytoremediation potential in waste dump of Shilu iron mining area contaminated with heavy metals[J/ OL]. Chinese Journal of Tropical Agriculture: 1-10.) [12] Abdelhameed R E, Metwally R A.2019. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis[J]. International Journal of Phytoremediation, 21(7): 663-671. [13] Ali H, Khan E, Sajad M A, et al.2013, Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 91(7): 869-881. [14] Allen M F.2011. Linking water and nutrients through the vadose zone: A fungal interface between the soil and plant systems[J]. Journal of Arid Land, 3(3): 155-163. [15] Álvarez-Fernández A, Díaz-Benito P, Abadía A, et al.2014. Metal species involved in long distance metal transport in plants[J]. Frontiers in Plant Science, 5: 105. [16] Anjum N A, Hasanuzzaman M, Hossain M A, et al.2015. Jacks of metal/metalloid chelation trade in plants—an overview[J]. Frontiers in Plant Science, 6: 192. [17] Arriagada C, Pereira G, García-Romera I, et al.2010. Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida[J]. Soil Biology and Biochemistry, 42(1): 118-124. [18] Azcon R, Perálvarez M del C, Biro B, et al.2009. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste[J]. Applied Soil Ecology, 41(2): 168-177. [19] Bahramabadi E Z, Nazoori F.2022. Effects of mycorrhizal symbiosis and drying methods on physio- logical traits of Carthamus tinctorius flowers[J]. Journal of Medicinal Plants and By-product, 11(Special): 1-10. [20] Begum N, Qin C, Ahanger M A, et al.2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance[J]. Frontiers in Plant Science, 10: 1068. [21] Bi Y, Xiao L, Liu R.2019. Response of arbuscular mycorrhizal fungi and phosphorus solubilizing bacteria to remediation abandoned solid waste of coal mine[J]. International Journal of Coal Science & Technology, 6(4): 603-610. [22] Boutasknit A, Baslam M, Ait-El-Mokhtar M, et al.2021. Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees[J]. Scientific Reports, 11(1): 22835. [23] Canton G C, Bertolazi A A, Cogo A J D, et al.2016, Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis[J]. Mycorrhiza, 26: 475-487. [24] Chandra P, Singh A, Prajapat K, et al.2022. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi-arid region[J]. Environmental and Experimental Botany, 201: 104982. [25] Chen B D, Zhu Y G, Duan J, et al.2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by fourplant species in copper mine tailings[J]. Environmental Pollution, 147(2): 374-380. [26] Chen X, Li H, Chan W F, et al.2012. Arsenite transporters expressionin rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress[J]. Chemosphere, 89: 1248-1254. [27] Dangi A K, Sharma B, Hill R T, et al.2019. Bioremediation through microbes: systems biology and metabolic engineering approach[J]. Critical Reviews in Biotechnology, 39(1): 79-98. [28] Degola F, Fattorini L, Bona E, et al.2015. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents[J]. Plant Physiology and Biochemistry, 92: 11-18. [29] Devi T S, Gupta S, Kapoor R.et al.2019. Arbuscular mycorrhizal fungi in alleviation of cold stress in plants[M]//, Satyanarayana T, Deshmukh S, Deshpande M. (eds). Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi, Springer, Singapore, pp. 435-455. [30] Dhalaria R, Kumar D, Kumar H, et al.2020. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants[J]. Agronomy, 10(6): 815. [31] Dietterich L H, Gonneau C, Casper B B.2017. Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils[J]. Ecological Applications, 27(6): 1862-1875. [32] Dong Y, Zhu Y G, Smith F A, et al.2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil[J]. Environmental Pollution, 155(1):174-181. [33] Elhindi K M, Al-Mana F A, El-Hendawy S, et al.2018. Arbuscular mycorrhizal fungi mitigates heavy metal toxicity adverse effects in sewage water contaminated soil on Tagetes erecta L.[J]. Soil Science and Plant Nutrition, 64(5): 662-668. [34] Fernández-Fuego D, Bertrand A, González A.et al.2017. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens[J]. Environmental Pollution, 231: 1153-1162. [35] French K E.2017. Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health[J]. Frontiers in Microbiology, 8: 1403. [36] Frey B, Zierold K, Brunner I.et al.2000. Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies-Hebeloma crustuliniforme ectomycorrhizas[J]. Plant, Cell & Environment, 23(11): 1257-1265. [37] Fuentes A, Almonacid L, Ocampo J A, et al.2016. Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil[J]. Plant and Soil, 407: 355-366. [38] Han Y, Zveushe O K, Dong F, et al.2021. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne)[J]. Science of The Total Environment, 798: 149222. [39] He M, Shen H, Li Z, et al.2019. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety[J]. Environmental Pollution, 244: 431-439. [40] Hu S, Hu B, Chen Z, et al.2020. Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress[J]. Environmental Research, 191: 110203. [41] Jamal A, Ayub N, Usman M, et al.2002. Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil[J]. International Journal of Phytoremediation, 4(3): 205-221. [42] Janeeshma E, Puthur J T.2020. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants[J]. Archives of Microbiology, 202: 1-16. [43] Jerbi M, Labidi S, Laruelle F, et al.2022. Mycorrhizal biofertilization improves grain yield and quality of hulless Barley (Hordeum vulgare ssp. nudum L.) under water stress conditions[J]. Journal of Cereal Science, 104: 103436. [44] Jiang Q Y, Zhuo F, Long S H, et al.2016. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?[J]. Scientific Reports, 6(1): 21805. [45] Jourand P, Ducousso M, Reid R, et al.2010. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations[J]. Tree Physiology, 30(10): 1311-1319. [46] Jourand P, Hannibal L, Majorel C, et al.2014. Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake[J].Journal of Plant Physiology, 171(2): 164-172. [47] Khullar S, Reddy M S.2020. Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis[J]. Chemosphere, 240: 124914. [48] Kong X, Zhao Y, Tian K, et al.2020. Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings[J]. Environmental Science and Pollution Research, 27: 8406-8417. [49] Kour D, Kaur T, Devi R, et al.2021. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges[J]. Environmental Science and Pollution Research, 28: 24917-24939. [50] Lenoir I, Fontaine J, Tisserant B, et al.2017. Beneficial contribution of the arbuscular mycorrhizal fungus, Rhizophagus irregularis, in the protection of Medicago truncatula roots against benzo[a]pyrene toxicity[J]. Mycorrhiza, 27(5): 465-476. [51] Li J, Sun Y, Jiang X, et al.2018. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning[J]. Ecotoxicology and Environmental Safety, 157: 235-243. [52] Li Q S, Xie Y C, Rahman M M, et al.2022. Arbuscular mycorrhizal fungi and endophytic fungi activate leaf antioxidant defense system of lane late navel orange[J]. Journal of Fungi, 8(3): 282. [53] Lin A J, Zhang X H, Wong M H, et al.2007. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization[J]. Environmental Geochemistry and Health, 29: 473-481. [54] Lin Y F, Aarts M G M.2012. The molecular mechanism of zinc and cadmium stress response in plants[J]. Cellular and Molecular Life Sciences, 69: 3187-3206. [55] Liu H, Chen H, Ding G, et al.2020. Identification of candidate genes conferring tolerance to aluminum stress in Pinus massoniana inoculated with ectomycorrhizal fungus[J]. BMC Plant Biology, 20: 1-13. [56] Lux A, Martinka M, Vaculík M, et al.2011. Root responses to cadmium in the rhizosphere: A review[J]. Journal of Experimental Botany, 62(1): 21-37. [57] Ma Y, He J, Ma C, et al.2014. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens[J]. Plant, Cell & Environment, 37(3): 627-642. [58] Meier S, Borie F, Bolan N, et al.2012. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 42(7): 741-775. [59] Ouatiki E, Midhat L, Tounsi A, et al.2022. The association between Pinus halepensis and the Ectomycorrhizal fungus Scleroderma enhanced the phytoremediation of a polymetal-contaminated soil[J]. International Journal of Environmental Science and Technology, 19(12): 12537-12550. [60] Pal R, Rai J P N.2010. Phytochelatins: Peptides involved in heavy metal detoxification[J]. Applied Biochemistry and Biotechnology, 160: 945-963. [61] Pan G, Wang W, Li X, et al.2023. Revealing the effects and mechanisms of arbuscular mycorrhizal fungi on manganese uptake and detoxification in Rhus chinensis[J]. Chemosphere, 339: 139768. [62] Parniske M.2008. Arbuscular mycorrhiza: The Mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 6(10): 763-775. [63] Punamiya P, Datta R, Sarkar D, et al.2010. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)][J]. Journal of Hazardous Materials, 177(1-3): 465-474. [64] Quan L, Shi L, Zhang S, et al.2023. Ectomycorrhizal fungi, two species of Laccaria, differentially block the migration and accumulation of cadmium and copper in Pinus densiflora[J]. Chemosphere, 334: 138857. [65] Reddy M S, Kour M, Aggarwal S, et al.2016. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis[J]. Environmental Microbiology, 18(8): 2446-2454. [66] Riaz M, Kamran M, Fang Y, et al.2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review[J]. Journal of Hazardous Materials, 402: 123919. [67] Sánchez-Castro I, Molina L, Prieto-Fernández M Á, et al.2023. Past, present and future trends in the remediation of heavy-metal contaminated soil-remediation techniques applied in real soil-contamination events[J]. Heliyon, 9(6): e16692. [68] Schreiner R P, Tian T.2022. Performance of taxonomically diverse native isolates of mycorrhizal fungi in symbiosis with young grapevines[J]. HortScience, 2022, 57(9): 1135-1144. [69] Sharma S, Anand G, Singh N, et al.2017. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism[J]. Frontiers in Plant Science, 8: 906. [70] Shi L, Deng X, Yang Y, et al.2019a. A Cr (VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation[J]. Chemosphere, 224: 862-872. [71] Shi W, Zhang Y, Chen S, et al.2019b. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants[J]. Plant, Cell & Environment, 2019, 42(4): 1087-1103. [72] Soudek P, Petrová Š, Vaňková R, et al.2014. Accumulation of heavy metals using Sorghum sp.[J]. Chemosphere, 104: 15-24. [73] Sun W, Yang B, Zhu Y, et al.2022. Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: Modulation of growth properties and the antioxidant defense responses[J]. Environmental Science and Pollution Research, 29(5): 6526-6537. [74] Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, et al.2014. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis[J]. Frontiers in Plant Science, 5: 547. [75] Tang Y, Shi L, Zhong K, et al.2019. Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals[J]. Chemosphere, 215: 115-123. [76] van Roy S, vanbroekhoven K, Dejonghe W, et al.2006. Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes[J]. Hydrometallurgy, 83(1-4): 195-203. [77] Vilela L A F, Barbosa M V. 2019. Contribution of arbuscular mycorrhizal fungi in promoting cadmium tolerance in plants[M]//, Hasanuzzaman M, Prasad M N V, Nahar K(eds.). Cadmium Tolerance in Plants. Academic Press, USA, pp. 553-586. [78] Wang Y, Wang R, Fan L, et al.2017. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China[J]. Chemosphere, 174: 613-627. [79] Wu J T, Wang L, Zhao L, et al.2020. Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress[J]. Plant Biology, 22(1): 62-69. [80] Yan L, Du C, Riaz M, et al.2019. Boron mitigates citrus root injuries by regulating intracellular pH and reactive oxygen species to resist H+-toxicity[J]. Environmental Pollution, 255: 113254. [81] Yan L, Riaz M, Wu X, et al.2018. Boron inhibits aluminum-induced toxicity to Citrus by stimulating antioxidant enzyme activity[J]. Journal of Environmental Science and Health, Part C, 36(3): 145-163. [82] Yang X, Feng Y, He Z, et al.2005. Molecular mechanisms of heavy metal hyperaccumulation and phytore- mediation[J]. Journal of Trace Elements in Medicine and Biology, 18(4): 339-353. [83] Yang Z, Chu C.2011. Towards understanding plant response to heavy metal stress[M]//, Shanker A, Venkateswarlu B(eds.). In Abiotic Stress in Plants-Mechanisms and Adaptations, InTech Open, UK, pp. 59-78. [84] Yin Z, Zhang Y, Hu N, et al.2021. Differential responses of 23 maize cultivar seedlings to an arbuscular mycorrhizal fungus when grown in a metal-polluted soil[J].Science of The Total Environment, 789: 148015. [85] Yu P, Sun Y, Huang Z, et al.2020. The effects of ectomycorrhizal fungi on heavy metals' transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area[J]. Journal of Hazardous Materials, 381: 121203. [86] Yu X, Cheng J, Wong M H, et al.2005. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biology and Biochemistry, 37(2): 195-201. [87] Zhang F, Liu M, Li Y, et al.2019a. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa[J]. Science of the Total Environment, 655: 1150-1158. [88] Zhang X F, Hu Z H, Yan T X, et al.2019b. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safety, 171: 352-360. [89] Zhang Y, Sa G, Zhang Y, et al.2017. Paxillus involutus-facilitated Cd2+ influx through plasma membrane Ca2+-permeable channels is stimulated by H2O2 and H+-ATPase in ectomycorrhizal Populus×canescens under cadmium stress[J]. Frontiers in Plant Science, 7: 1975. |
|
|
|