|
|
Single-cell RNA Sequencing Technology and Its Application in Animal Bone Research |
LIU Zhe, TIAN Xue-Kai, HE Yu-Lin, YANG Pei-Yu, YU Tai-Yong* |
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China |
|
|
Abstract The skeleton is an important part of the animal body, playing a vital role in providing biomechanical support, maintaining movement, hematopoiesis, and calcium homeostasis. The application of bulk RNA sequencing (bulk RNA-seq) technology in skeletal research has provided important references for revealing the development of bone cells, but it still has limitations in revealing the heterogeneity of bone cells. In recent years, the emerging single-cell RNA sequencing (scRNA-seq) technology has greatly improved the efficiency of cell capture and survival rate, allowing researchers to interpret biological information from the perspective of individual cells in a population of cells, providing a new research strategy for studying the heterogeneity of bone cells and the relationship between cell populations. This article reviewed the progress of single-cell RNA sequencing technology and its application in animal bone research, with the aim of providing reference for future studies.
|
Received: 13 June 2023
|
|
Corresponding Authors:
*yutaiyong310@nwsuaf.edu.cn
|
|
|
|
[1] 常文婧,赵彦艳. 2020. 激光捕获显微切割在肿瘤多组学研究中的应用进展[J]. 生物技术进展, 10(2): 130-136. (Chang W J, Zhao Y Y.2020. Progress in application of laser capture microdissection in tumor multi-omics study[J]. Current Biotechnology, 10(2): 130-136) [2] 关鑫. 2022. 骨髓间充质干细胞在治疗老年性骨质疏松中的作用及机制研究[D/OL]. 硕士学位论文, 南方医科大学, 导师: 余斌, pp.10-11. (Guan X.2022. The role and mechanism of bone marrow mesenchymal stem cell in treating senile osteoporosis[D/OL]. Thesis for M. S., Southern Medical University, Supervisor: Yu B, pp.10-11.) [3] 郭肖杰. 2016. 液滴微流控技术在微生物分离分析中的应用[D]. 硕士学位论文, 中国科学技术大学, 导师: 杜文斌, pp. 25-26. (Guo X J.2020. The application of droplet microfluidic in microorganism separation and analysis[D]. Thesis for M. S., University of Science and Technology of China, Supervisor: Du W B, pp. 25-26.) [4] 王若宇,孟强. 2020. 激光捕获显微切割技术进展与应用[J]. 重庆医科大学学报, 2020(8): 8-14. (Wang R Y, Meng Q.2020. Advances in laser capture microdissection and its clinical application[J]. Journal of Chongqing Medical University, 2020(8): 8-14) [5] 张宝月. 2020. 稀有样本单细胞测序技术取得进展[J]. 生物医学工程与临床, 24(1): 74. (Zhang B Y.2020. Advances in single-cell sequencing technology for rare samples[J]. Biomedical Engineering and Clinical Medicine, 24(1): 74) [6] 张晓兰, 李春立, 樊峥, 等. 2018. 基于显微操作的单细胞分选方法[J]. 电子显微学报, 37(1): 97-100. (Zhang X L, Li C L, Fan Z, et al.2018. Method for single cell sorting by micromanipulation[J]. Journal of Chinese Electron Microscopy Society, 37(1): 97-100) [7] Addison W N, Nakano Y, Loisel T, et al.2008. MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: An inhibition regulated by PHEX cleavage of ASARM[J]. Journal of Bone and Mineral Research, 23(10): 1638-1649. [8] Agoro R, Nookaew I, Noonan M L, et al.2023. Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease[J]. Frontiers in Endocrinology, 14: 1063083. [9] Alivernini S, MacDonald L, Elmesmari A, et al.2020. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis[J]. Nature Medicine, 26(8): 1295-1306. [10] Arthur A, Gronthos S.2020. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. International Journal of Molecular Sciences, 21(24): 9759. [11] Avigdor A.2004. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow[J]. Blood, 103(8): 2981-2989. [12] Avin K G, Dominguez J M, Chen N X, et al.2023. Single‐cell RNA-seq provides insight into altered immune cell populations in human fracture nonunions[J]. Journal of Orthopaedic Research, 41(5): 1060-1069. [13] Babić Leko M, Pleić N, Gunjača I, et al.2021. Environmental factors that affect parathyroid hormone and calcitonin levels[J]. International Journal of Molecular Sciences, 23(1): 44. [14] Baek D, Park K H, Lee K M, et al.2021. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Cell Death & Disease, 12(3): 238. [15] Becht E, McInnes L, Healy J, et al. 2019. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nature Biotechnology, 2019, 37(1): 38-44. [16] Berendsen A D, Olsen B R.2015. Bone development[J]. Bone, 80: 14-18. [17] Bonewald L F.2017. The role of the osteocyte in bone and nonbone disease[J]. Endocrinology and Metabolism Clinics of North America, 46(1): 1-18. [18] Brennan-Speranza T C, Conigrave A D.2015. Osteocalcin: An osteoblast-derived polypeptide hormone that modulates whole body energy metabolism[J]. Calcified Tissue International, 96(1): 1-10. [19] Cassuto J, Folestad A, Göthlin J, et al.2018. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β-catenin in bone healing of hip arthroplasty patients[J]. Bone, 107: 66-77. [20] Chang M K, Raggatt L J, Alexander K A, et al.2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. The Journal of Immunology, 181(2): 1232-1244. [21] Chen G, Deng C, Li Y P.2012. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. International Journal of Biological Sciences, 8(2): 272-288. [22] Chen H, Fang X, Shao J, et al.2023. Pan‐cancer single‐nucleus total RNA sequencing using snHH‐Seq[J/OL]. Advanced Science, 2023: 2304755. [23] Chen X, Wang Z, Duan N, et al.2018. Osteoblast-osteoclast interactions[J]. Connective Tissue Research, 59(2): 99-107. [24] Chou C H, Jain V, Gibson J, et al.2020. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis[J]. Scientific Reports, 10(1): 10868. [25] Chu T L, Chen P, Yu A X, et al.2023. MMP14 cleaves PTH1R in the chondrocyte-derived osteoblast lineage, curbing signaling intensity for proper bone anabolism[J]. eLife, 12: e82142. [26] Compston J E, Mcclung M R, Leslie W D.2019. Osteoporosis[J/OL]. The Lancet, 393(10169): 364-376. [27] Culemann S, Grüneboom A, Nicolás-Ávila J Á, et al.2019. Locally renewing resident synovial macrophages provide a protective barrier for the joint[J]. Nature, 572(7771): 670-675. [28] Ding Y, Mo C, Geng J, et al.2022. Identification of periosteal osteogenic progenitors in jawbone[J]. Journal of Dental Research, 101(9): 1101-1109. [29] Do V H, Canzar S.2021. A generalization of t-SNE and UMAP to single-cell multimodal omics[J]. Genome Biology, 22(1): 130. [30] Dobin A, Gingeras T R.2015. Mapping RNA-Seq reads with STAR[J]. Current Protocols in Bioinformatics, 51(1): 11.14.1-11.14.19. [31] Dobin A, Gingeras T R.2016. Optimizing RNA-Seq mapping with STAR[M]∥Carugo O, Eisenhaber F (eds.). Data Mining Techniques for the Life Sciences. New York, NY: Springer New York, pp. 245-262. [32] Dong B, Hiasa M, Higa Y, et al.2022. Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis[J]. Nature Communications, 13(1): 7194. [33] Efremova M, Vento-Tormo M, Teichmann S A, et al.2020. CellPhoneDB: iInferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes[J]. Nature Protocols, 15(4): 1484-1506. [34] Erben R G.2017. Pleiotropic actions of FGF23[J]. Toxicologic Pathology, 45(7): 904-910. [35] Fan Y, Dong D, Li Q, et al.2018. Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips[J]. Lab on a Chip, 18(8): 1151-1173. [36] Gabet Y, Neumann D, Levaot N, et al.2021. Editorial: Developmental biology and regulation of osteoclasts[J]. Frontiers in Cell and Developmental Biology, 9: 769320. [37] Gan Y, He J, Zhu J, et al.2021. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs[J]. Bone Research, 9(1): 37. [38] Gao C, Zhang M, Chen L.2020. The comparison of two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium[J]. Current Genomics, 21(8): 602-609. [39] Greenblatt M B, Ono N, Ayturk U M, et al.2019. The unmixing problem: A guide to applying single-cell RNA sequencing to bone[J]. Journal of Bone and Mineral Research, 34(7): 1207-1219. [40] Guo J, Ren R, Sun K, et al.2020. PERK controls bone homeostasis through the regulation of osteoclast differentiation and function[J]. Cell Death & Disease, 11(10): 847. [41] Han Y, You X, Xing W, et al.2018. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts[J]. Bone Research, 6(1): 16. [42] Hao R C, Li Z L, Wang F Y, et al.2023. Single-cell transcriptomic analysis identifies a highly replicating Cd168+ skeletal stem/progenitor cell population in mouse long bones[J]. Journal of Genetics and Genomics, 2023: S1673852723000917. [43] Heins A, Hoang M D, Weuster-Botz D.2022. Advances in automated real-time flow cytometry for monitoring of bioreactor processes[J]. Engineering in Life Sciences, 22(3-4): 260-278. [44] Heiser C N, Lau K S.2020. A quantitative framework for evaluating single-cell data structure preservation by dimensionality reduction techniques[J]. Cell Reports, 31(5): 107576. [45] Hu X, Li Z, Ji M, et al.2022. Identification of cellular heterogeneity and immunogenicity of chondrocytes via single-cell RNA sequencing technique in human osteoarthritis[J]. Frontiers in Pharmacology, 13: 1004766. [46] Hul L M, Ibelli A M G, Savoldi I R, et al.2021. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens[J]. Scientific Reports, 11(1): 17965. [47] Jacobsen K, Sakofsky C, Lopez-Salmeron V, et al.2020. Multiomic characterization of T-cell populations at the single-cell level utilizing sensitive dextramers and BD® AbSeq on the BD RhapsodyTM single-cell analysis system[J]. Journal for ImmunoTherapy of Cancer, 8(Suppl 3): A331. [48] Ji Q, Zheng Y, Zhang G, et al.2019. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Annals of the Rheumatic Diseases, 78(1): 100-110. [49] Kaya S, Schurman C A, Dole N S, et al.2022. Prioritization of genes relevant to bone fragility through the unbiased integration of aging mouse bone transcriptomics and human GWAS analyses[J]. Journal of Bone and Mineral Research, 37(4): 804-817. [50] Kelly R R, Mcdonald L T, Pellegrini V D, et al.2018. Identification of circulating murine CD34+OCN+ cells[J]. Cytotherapy, 20(11): 1371-1380. [51] Kim D, Langmead B, Salzberg S L.2015. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 12(4): 357-360. [52] Klein A M, Mazutis L, Akartuna I, et al.2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 161(5): 1187-1201. [53] Kobak D, Berens P.2019. The art of using t-SNE for single-cell transcriptomics[J]. Nature Communications, 10(1): 5416. [54] Kuo D, Ding J, Cohn I S, et al.2019. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness[J]. Science Translational Medicine, 11(491): eaau8587. [55] Lambrechts D, Wauters E, Boeckx B, et al.2018. Phenotype molding of stromal cells in the lung tumor microenvironment[J/OL]. Nature Medicine, 24(8): 1277-1289. [56] Li C, Qiu M, Chang L, et al.2022. The osteoprotective role of USP26 in coordinating bone formation and resorption[J]. Cell Death & Differentiation, 29(6): 1123-1136. [57] Li J, Wang L, Yu D, et al.2021a. Single-cell rna sequencing reveals thoracolumbar vertebra heterogeneity and rib-genesis in pigs[J]. Genomics, Proteomics & Bioinformatics, 19(3): 423-436. [58] Li Z, Xue H, Tan G, et al.2021b. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)[J]. Molecular Medicine Reports, 24(5): 788. [59] Liu S, Wang C, Bai J, et al.2021. Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis[J]. Cell Biology International, 45(2): 447-455. [60] Luecken M D, Theis F J.2019. Current best practices in single-cell RNA-seq analysis: A tutorial[J]. Molecular Systems Biology, 15(6): e8746. [61] Luo W, Zhou Y, Wang J, et al.2021. Identifying candidate genes involved in the regulation of early growth using full-length transcriptome and RNA-seq analyses of frontal and parietal bones and vertebral bones in bighead carp (Hypophthalmichthys nobilis)[J]. Frontiers in Genetics, 11: 603454. [62] Lv H, Wang T, Zhai S, et al.2022. Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken[J]. Frontiers in Cell and Developmental Biology, 10: 940248. [63] Macosko E Z, Basu A, Satija R, et al.2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 161(5): 1202-1214. [64] Meng J, Zhang W, Wang C, et al.2020. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity[J]. Biochemical Pharmacology, 171: 113715. [65] Meslier V, Quinquis B, Da Silva K, et al.2022. Benchmarking second and third-generation sequencing platforms for microbial metagenomics[J/OL]. Scientific Data, 9(1): 694. [66] Michos O, Panman L, Vintersten K, et al.2004. Gremlin -mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis[J]. Development, 131(14): 3401-3410. [67] Mizoguchi F, Slowikowski K, Wei K, et al.2018. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis[J]. Nature Communications, 9(1): 789. [68] Nehar-Belaid D, Hong S, Marches R, et al.2020. Mapping systemic lupus erythematosus heterogeneity at the single-cell level[J/OL]. Nature Immunology, 21(9): 1094-1106. [69] Nie C H, Wan S M, Chen Y L, et al.2022. Single-cell transcriptomes and runx2b-/- mutants reveal the genetic signatures of intermuscular bone formation in zebrafish[J]. National Science Review, 9(11): nwac152. [70] Oatley M, Bölükbası Ö V, Svensson V, et al.2020. Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition[J]. Nature Communications, 11(1): 586. [71] Okamura T, Hamaguchi M, Tominaga H, et al.2022. Characterization of peripheral blood TCR in patients with type 1 diabetes mellitus by BD RhapsodyTM VDJ CDR3 assay[J]. Cells, 11(10): 1623. [72] Pan J, Li H, Jin K, et al.2023. Periosteal topology creates an osteo-friendly microenvironment for progenitor cells[J]. Materials Today Bio, 18: 100519. [73] Park-Min K H, Lorenzo J.2022. Osteoclasts: Other functions[J]. Bone, 165: 116576. [74] Pfisterer U, Petukhov V, Demharter S, et al.2020. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis[J/OL]. Nature Communications, 11(1): 5038. [75] Pittenger M F, Discher D E, Péault B M, et al.2019. Mesenchymal stem cell perspective: Cell biology to clinical progress[J]. npj Regenerative Medicine, 4(1): 22. [76] Prié D.2021. FGF23 and cardiovascular risk[J]. Annales d'Endocrinologie, 82(3-4): 141-143. [77] Qi Z, Barrett T, Parikh A S, et al.2019. Single-cell sequencing and its applications in head and neck cancer[J]. Oral Oncology, 99: 104441. [78] Qiu X, Liu Y, Shen H, et al.2021. Single-cell RNA sequencing of human femoral head in vivo[J]. Aging, 13(11): 15595-15619. [79] Qiu X, Mao Q, Tang Y, et al.2017. Reversed graph embedding resolves complex single-cell trajectories[J]. Nature Methods, 14(10): 979-982. [80] Radbruch A, Assenmacher M, Kato K, et al.1993. New immunofluorescence in flow cytometry and sorting: Isolation of rare cells, detection of rare epitopes and analysis of secretion[J]. Biology of the Cell, 79(3): 293-293. [81] Ramilowski J A, Goldberg T, Harshbarger J, et al.2015. A draft network of ligand-receptor-mediated multicellular signalling in human[J]. Nature Communications, 6(1): 7866. [82] Reinhardt R, Gullotta F, Nusspaumer G, et al.2019. Molecular signatures identify immature mesenchymal progenitors in early mouse limb buds that respond differentially to morphogen signaling[J/OL]. Development, dev.173328. [83] Robert A W, Marcon B H, Dallagiovanna B, et al.2020. Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: A comparative transcriptome approach[J]. Frontiers in Cell and Developmental Biology, 8: 561. [84] Rubenstein A B, Smith G R, Raue U, et al.2020. Single-cell transcriptional profiles in human skeletal muscle[J/OL]. Scientific Reports, 10(1): 229. [85] Sebastian A, Loots G G.2017. Transcriptional control of Sost in bone[J]. Bone, 96: 76-84. [86] Smith T, Heger A, Sudbery I.2017. UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy[J]. Genome Research, 27(3): 491-499. [87] Stephenson W, Donlin L T, Butler A, et al.2018. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation[J]. Nature Communications, 9(1): 791. [88] Suchacki K J, Roberts F, Lovdel A, et al.2017. Skeletal energy homeostasis: A paradigm of endocrine discovery[J]. Journal of Endocrinology, 234(1): R67-R79. [89] Sun J, Lin Y, Ha N, et al.2023. Single-cell RNA-seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence[J/OL]. Journal of Genetics and Genomics, 50(9): 676-687. [90] Tang F, Barbacioru C, Wang Y, et al.2009. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nature Methods, 6(5): 377-382. [91] Tikhonova A N, Dolgalev I, Hu H, et al.2019. The bone marrow microenvironment at single-cell resolution[J]. Nature 569(7755): 222-228. [92] Tsukasaki M, Huynh N C N, Okamoto K, et al.2020. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution[J]. Nature Metabolism, 2(12): 1382-1390. [93] Van de Peppel J, Strini T, Tilburg J, et al.2017. Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics[J]. Stem Cell Reports, 8(4): 947-960. [94] Volden R, Vollmers C.2022. Single-cell isoform analysis in human immune cells[J]. Genome Biology, 23(1): 47. [95] Wang X, He Y, Zhang Q, et al.2021. Direct comparative analyses of 10x Genomics Chromium and Smart-seq2[J]. Genomics, Proteomics & Bioinformatics, 19(2): 253-266. [96] Wang Y, Wang Q, Xu Q, et al.2022. Single-cell RNA sequencing analysis dissected the osteo-immunology microenvironment and revealed key regulators in osteoporosis[J]. International Immunopharmacology, 113: 109302. [97] Wang Y, Wang R, Zhang S, et al.2019. iTALK: An R package to characterize and illustrate intercellular communication[R]. bioRxiv, DOI:10.1101/507871. [98] Wijenayaka A R, Kogawa M, Lim H P, et al.2011. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway[J]. PLOS ONE, 6(10): e25900. [99] Williams R M, Sauka-Spengler T.2021. Dissociation of chick embryonic tissue for FACS and preparation of isolated cells for genome-wide downstream assays[J]. STAR Protocols, 2(2): 100414. [100] Wolock S L, Krishnan I, Tenen D E, et al.2019. Mapping distinct bone marrow niche populations and their differentiation paths[J]. Cell Reports, 28(2): 302-311.e5. [101] Wong K C, Zhang J, Yan S, et al.2020. DNA sequencing technologies: Sequencing data protocols and bioinformatics tools[J]. ACM Computing Surveys, 52(5): 1-30. [102] Xu Y, Zhang T, Zhou Q, et al.2023a. A single-cell transcriptome atlas profiles early organogenesis in human embryos[J/OL]. Nature Cell Biology, 25(4): 604-615. [103] Xu Z, Zhang T, Chen H, et al.2023b. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq[J/OL]. Nature Communications, 14(1): 2734. [104] Yang B A, Westerhof T M, Sabin K, et al.2021. Engineered tools to study intercellular communication[J]. Advanced Science, 8(3): 2002825. [105] Yang L, He Y T, Dong S, et al.2022. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma[J/OL]. Journal for ImmunoTherapy of Cancer, 10(2): e003534. [106] Yin Z, Lin J, Yan R, et al.2020. Atlas of musculoskeletal stem cells with the soft and hard tissue differentiation architecture[J]. Advanced Science, 7(23): 2000938. [107] Zhang F, Wei K, Slowikowski K, et al.2019. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry[J/OL]. Nature Immunology, 20(7): 928-942. [108] Zhang H, Wang R, Wang G, et al.2021a. Single-cell RNA sequencing reveals B cells are important regulators in fracture healing[J]. Frontiers in Endocrinology, 12: 666140. [109] Zhang H X, Cao C, Li X H, et al.2022a. Imputation of human primary osteoblast single cell RNA-seq data identified three novel osteoblastic subtypes[J]. Frontiers in Bioscience-Landmark, 27(10): 295. [110] Zhang N, Chen Y, Huang C, et al.2022b. Adipose-derived mesenchymal stem cells may reduce intestinal epithelial damage in ulcerative colitis by communicating with macrophages and blocking inflammatory pathways: An analysis in silico[J]. Aging, 14(6): 2665-2677. [111] Zhang P, Dong J, Fan X, et al.2023a. Characterization of mesenchymal stem cells in human fetal bone marrow by single-cell transcriptomic and functional analysis[J]. Signal Transduction and Targeted Therapy, 8(1): 126. [112] Zhang Q, Dong J, Zhang P, et al.2021b. Dynamics of transcription factors in three early phases of osteogenic, adipogenic, and chondrogenic differentiation determining the fate of bone marrow mesenchymal stem cells in rats[J]. Frontiers in Cell and Developmental Biology, 9: 768316. [113] Zhang S, Cui Y, Ma X, et al.2020. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development[J/OL]. Nature Communications, 11(1): 5275. [114] Zhang W, Dong R, Diao S, et al.2017. Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. Stem Cell Research & Therapy, 8(1): 30. [115] Zhang W, Zhou X, Hou W, et al.2023b. Reversing the imbalance in bone homeostasis via sustained release of SIRT-1 agonist to promote bone healing under osteoporotic condition[J]. Bioactive Materials, 19: 429-443. [116] Zhao X, Gao S, Kajigaya S, et al.2020. Comprehensive analysis of single-cell RNA sequencing data from healthy human marrow hematopoietic cells[J]. BMC Research Notes, 13(1): 514. [117] Zhong L, Yao L, Tower R J, et al.2020. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment[J]. eLife, 9: e54695. [118] Zhou Y, Yang D, Yang Q, et al.2020. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J]. Nature Communications, 11(1): 6322. |
|
|
|