|
|
RNA Interference Efficiency Comparison of Bovine (Bos taurus) MSTN Gene Mediated by CRISPR-Cas13a and MicroRNA |
LEI Jia-Ru*, WANG Song*, DI An-Qi, AN Chang-Suo, SUN Xue-Song, LIU Ming-Cheng, YUAN Hong-Min, YANG Lei**, LI Guang-Peng** |
State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China |
|
|
Abstract RNA interference (RNAi) is mainly mediated by small interfering RNA (siRNA), short hairpin RNA (shRNA), microRNA (miRNA) and CRISPR/Cas13a. miRNA mediates RNAi through complementary pairing with target mRNA bases. CRISPR/Cas13a mediates RNAi through the combined action of CRISPR-derived RNA (crRNA) and Cas13a proteins. Comparison of CRISPR/Cas13a- and miRNA-mediated RNAi efficiency has not been reported. In this study, according to the mRNA homologous sequence of myostatin gene (MSTN) in Simmental cattle (Bos taurus) and mouse (Mus musculous), MSTN-crRNA-1/2/3 and MSTN-miRNA-1/2/3 were designed. In order to eliminate the fluctuations of CRISPR/Cas13a interference efficiency caused by unstable Cas13a protein expression, firstly, cattle muscle satellite cell lines (SCs) and mouse myoblast cell lines C2C12 with stable expression of Cas13a protein were prepared. Then, MSTN-crRNA-1/2/3 were transfected into cattle Cas13a-SCs and mouse Cas13a-C2C12, respectively. Meanwhile, MSTN-miRNA-1/2/3 were transfected into cattle SCs and mouse C2C12, respectively. The efficiency of CRISPR/Cas13a- and miRNA-mediated MSTN interference was detected by qRT-PCR after 48 h transfection. In addition, MTT assay and Cell Counting Kit-8 (CCK-8) assay were used to detect the effects of CRISPR/Cas13a- and miRNA-mediated MSTN knockdown on cell activity and proliferation. The results showed that the average and highest interference efficiency of MSTN-crRNA-1/2/3 in cattle Cas13a-SCs and mouse Cas13a-C2C12 were 45% and 54%, respectively. The average and highest interference efficiency of MSTN-miRNA-1/2/3 in cattle SCs and mouse C2C12 were 30% and 33%, respectively, indicating that CRISPR/Cas13a had higher interference efficiency than miRNA in cattle SCs and mouse C2C12. In addition, the cell viability and proliferation ability of MSTN-miRNA-1/2/3 in cattle SCs and mouse C2C12 decreased by 12% and 12.5% (P<0.05), respectively, while the cell viability and proliferation ability of MSTN-crRNA-1/2/3 had no effect. This study provides basic data for the research and application of gene editing in model animals and large livestocks.
|
Received: 02 March 2023
|
|
Corresponding Authors:
** Corresponding authors, mrknowall@126.com; gpengli@imu.edu.cn
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 陈芳, 陈婷婷, 高小姣, 等. 2017. shRNA和siRNA敲降NET-1对A431细胞生物学行为影响的比较[J]. 南通大学学报(医学版), 37(04): 305-310. (Chen F, Chen T T, Gao X J, et al.2017. Comparison of the effects of shRNA and siRNA knockdown on the biological behavior of A431 cells[J]. Journal of Nantong University (Medical Edition), 37(04): 305-310.) [2] 陈莉, 秦婧, 朱远源. 2009. 在医药领域中RNA干扰研究进展[J]. 药物生物技术, 16(01): 83-89. (Chen L, Qin J, Zhu Y Y.2009. Research progress of RNA interference in pharmaceutical field[J]. Pharmaceutical Biotechnology, 16(01): 83-89.) [3] 冯紫婷, 安清明, 王大会, 等. 2020. miRNA调控家畜肌肉组织生长发育的研究进展[J]. 中国畜牧杂志, 56(07): 1-5. (Feng Z T, An Q M, Wang D H, et al.2020. Research progress of miRNA regulation on growth and development of domestic animal muscle tissue[J]. Chinese Journal of Animal Science, 56(07): 1-5.) [4] 黎梦, 彭涵, 彭永佳, 等. 2022. 植物源miRNA跨界调控动物机体健康研究进展[J]. 动物营养学报, 34(05): 2732-2740. (Li M, Peng H, Peng Y J, et al.2022. Research progress on transboundary regulation of plant-derived miRNA in animal health[J]. Chinese Journal of Animal Nutrition, 34(05): 2732-2740.) [5] 刘贵生, MEKCNAY Supamit, 吴俊静, 等. 2018. 与众不同的核酸酶Cas13a: 编辑RNA的新CRISPR平台及其进展[J]. 湖北农业科学, 57(02): 5-8. (Liu G S, MEKCNAY S, Wu J J, et al.2018. Nuclease Cas13a: A novel CRISPR platform for editing RNA and its development[J]. Hubei Agricultural Sciences, 57(02): 5-8.) [6] 莫芹, 徐莉莉, 吕贝贝. 2022. RNAi生物农药在作物保护上的应用[J]. 上海农业学报, 38(02): 136-142. (Mo Q, Xu L L, Lv B B.2022. Application of RNAi biopesticide in crop protection[J]. Shanghai Agricultural Journal, 38(02): 136-142.) [7] 魏著英, 白春玲, 李光鹏. 2018. 牛肌肉生长抑制素基因突变的遗传效应与育种应用[J]. 生物技术进展, 8(3): 197-205. (Wei Z Y, Bai C L, Li G P.2018. Genetic effect and breeding application of myostatin gene mutation in beef cattle[J]. Current Biotechnology, 8(3): 197-205.) [8] 杨林, 刘小龙, 习欠云, 等. 2012. 猪生长抑素Ⅱ型受体基因(SSTR2) shRNA的构建与筛选[J]. 农业生物技术学报, 20(04): 382-388. (Yang L, Liu X L, Xi Q Y, et al.2012. Construction and screening of porcine somatostatin typeⅡreceptor gene (SSTR2) shRNA[J]. Journal of Agricultural Biotechnology, 20(04): 382-388.) [9] 张爱霞, 朱庆锋, 陈沛, 等. 2020. 基于CRISPR/Cas13的RNA编辑系统及其在核酸检测中的应用[J]. 广东农业科学, 47(11): 243-251. (Zhang A X, Zhu Q F, Chen P, et al.2020. RNA editing system based on CRISPR/Cas13 and its application in nucleic acid detection[J]. Guangdong Agricultural Sciences, 47(11): 243-251.) [10] 周静, 金晶, 何娜娜, 等. 2020. 鸡Wnt5a基因慢病毒干扰载体的构建及其稳定表达的胚胎干细胞系筛选[J]. 农业生物技术学报, 28(02): 260-269. (Zhou J, Jin J, He N N, et al.2020. Construction of lentivirus interference vector of chicken Wnt5a gene and screening of stable expression of embryonic stem cell lines[J]. Journal of Agricultural Biotechnology, 28(02): 260-269.) [11] 朱琳, 谷明娟, 王丽娜, 等. 2022. Myostatin基因编辑牛骨骼肌组织学结构与转录组分析[J]. 农业生物技术学报, 30(10): 1903-1912. (Zhu L, Gu M J, Wang L N, et al.2022. Analysis of skeletal muscle structure and transcriptome by myostatin gene editing[J]. Journal of Agricultural Biotechnology, 30(10): 1903-1912.) [12] 朱亭帆. 2022. 人工miRNA抗PEDV效果研究及其在细胞上初步应用[D]. 硕士学位论文, 扬州大学, 导师: 金文杰, 秦爱建, pp. 63-66. (Zhu T F.2022. Anti-PEDV effect of artificial miRNA and its preliminary application in cells[D]. Thesis for M.S., Yangzhou University, Supervisor: Jin W J, Qin A J, pp. 63-66.) [13] Abudayyeh O O, Gootenberg J S, Essletzbichler P, et al.2017. RNA targeting with CRISPR-Cas13[J]. Nature, 550(7675): 280-284. [14] Aiello D, Patel K, Lasagna E.2018. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals[J]. Animal Genetics, 49(6): 505-519. [15] Blanchard E L, Vanover D, Bawage S S, et al.2021. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents[J]. Nature Biotechnology, 39(6): 717-726. [16] Castel S E, Martienssen R A.2013. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond[J]. Nature Reviews Genetics, 14(2): 100-112. [17] Cong W, Jin H, Cheng D J, et al.2010. Attenuated Salmonella choleraesuis mediated RNAi targeted to conserved regions against Foot and mouth disease virus in guinea pigs and swine[J]. Veterinary Research, 41(3): 30-46. [18] Cooper A M, Silver K, Zhang J, et al.2019. Molecular mechanisms influencing efficiency of RNA interference in insects[J]. Pest Managemengt Science, 75(01): 18-28. [19] Fire A, Xu S, Montgomery M K, et al.1998. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans[J]. Nature, 391(6669): 806-811. [20] Gootenberg J S, Abudayyeh O O, Lee J W, et al.2017. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 356(6336): 438-442. [21] Hohjoh H.2004. Enhancement of RNAi activity by improved siRNA duplexes[J]. FEBS Letters, 557(1/2/3): 193-198. [22] Hull J J, Yang Y W, Miyasaki K, et al.2020. TRPA1 modulates noxious odor responses in Lygus hesperus[J]. Journal of Insect Physiology, 122: 104038. [23] Lv K, Guo Y J, Zhang Y L, et al.2009. Transient inhibition of Foot-and-mouth disease virus replication by siRNAs silencing VP protein coding region[J]. Veterinary Science, 86: 443-452. [24] Konermann S, Lotfy P, Brideau N J, et al.2018. Transcriptome engineering with RNA-targeting type Ⅵ-D CRISPR effectors[J]. Cell, 173(3): 665-676. [25] Koonin E V, Makarova K S, Zhang F.2017. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 37: 67-78. [26] Lee S J, McPherron A C.2001. Regulation of myostatin activity and muscle growth[J]. Proceedings of the National Academy of Sciences of the USA, 98(16): 9306-9311. [27] Li J N, Dai Y J, Liu S, et al.2011. In vitro inhibition of CSFV replication by multiple siRNA expression[J]. Antiviral Research, 91: 209-216. [28] Liang X P, Li D P, Leng S L, et al.2020. RNA-based pharmacotherapy for tumors: From bench to clinic and back[J]. Biomedicine & Pharmacotherapy, 125: 109997. [29] Lin C N, Lin W H, Hung L N, et al.2013. Comparison of viremia of typeⅡporcine Reproductive and respiratory syndrome virus in naturally infected pigs by zip nucleic acid probe-based real-time PCR[J]. BMC Veterinary Research, 9: 181. [30] Liu L, Li X, Wang J Y, et al.2017. Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 168(1/2): 121-134. [31] Loonstra A, Vooijs M, Beverloo H B, et al.2001. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells[J]. Proceedings of the National Academy of Sciences of the USA, 98(16): 9209-9214. [32] Ma Q N, Wang M, Zheng L B, et al.2021. RAA-Cas12a-Tg: A nucleic acid detection system for Toxoplasma gondii based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA)[J]. Microorganisms, 9(8): 1644. [33] McPherron A C, Lee S J.1997. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences of the USA, 94(23): 12457-12461. [34] O'connell M R.2019. Molecular mechanisms of RNA targeting by Cas13-containing typeⅥCRISPR-Cas Systems[J]. Molecular Biology, 431(1): 66-87. [35] Saliminejad K, Khorshid H R K, Fard S S, et al.2019. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods[J]. Cell Physiology, 234(5): 5451-5465. [36] Shmakov S, Smargon A, Scott D, et al.2017. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 15(3): 169-182. [37] Spear A, Faaberg K S.2015. Development of a genome copy specific RT-qPCR assay for divergent strains of type 2 Porcine reproductive and respiratory syndrome virus[J]. Journal of Virological Methods, 218: 1-6. [38] Ui-tei K, Naito Y, Takahashi F, et al.2004. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nucleic Acids Research, 32(3): 936-948. [39] Wang Z, Lu Q Y, Zhang L Y, et al.2021. Aphid salivary protein Mp1 facilitates infestation by binding phloem protein 2-A1 in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 572: 105-111. [40] Yang L, Chen L L.2017. Enhancing the RNA engineering toolkit[J]. Science, 358(6366): 996-997. [41] Zhao J, Li Y, Xue Q, et al.2022. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD)[J]. Parasite, 29: 21. |
|
|
|