Effect of Supplementation with Glycyrrhiza uralensis Extract, Lactobacillus acidophilus and their Combination on Immune and Antioxidant Functions in Broilers (Gallus gallus)
LI Xi-Mei1, LI Jia-Wei1, HE Nai-Fei1, TIAN Jia-Min1, XU Lin-Na2, CHEN Yan1, JIANG Su-Su1, ZHANG Guo-Hua1,*, LU Jian-Xiong1,*
1 School of Life Science and Engineering, Northwest Minzu University, Lanzhou 730124, China; 2 Gansu Provincial Animal Husbandry Technology Popularization Station, Lanzhou 730030, China
Abstract:Enhancing the immunity and antioxidant capacity is a critical issue that urgently needs to be addressed in modern broiler production. Medicinal plants and probiotics exhibit anti-inflammatory, antioxidant, and immunomodulatory properties. This experiment aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination on immune and antioxidant functions of broilers (Gallus gallus). A total of 420 one-day-old male Liangfenghua broilers were randomly assigned to 4 groups each with 7 replicates, and 15 broilers per replicate. The broilers were fed a basal diet (Con group), a basal diet with 0.1% GUE supplementation (GUE group), basal diet with 1.5% Lac supplementation (Lac group), and basal diet with 0.1% GUE and 1.5% Lac supplementation (GUE+Lac group), respectively. The experiment lasted for 84 d. The results were as follows: 1) Compared with the Con group, the activities of serum, jejunum and liver superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of broilers in the supplementation groups were significantly increased (P<0.05), while the malondialdehyde (MDA) content was decreased (P<0.05); 2) The serum immunoglobulin A (IgA) and immunoglobulin G (IgG), jejunum villus height, villus height/crypt depth (VH/CD) ratio and secretory IgA (sIgA) content of broilers in the supplementation groups were significantly increased (P<0.05); 3) The mRNA expression of jejunal mucosal immune-related genes mucin 2 (MUC2), cluster of differentiation (CD) 4 positive T cells CD4+ and CD8+, interleukin-4 (IL-4) and IL-10 at 56 and 84 d, and the liver nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were significantly increased (P<0.05), while inducible nitric oxide synthase (iNOS), IL-6, nuclear factor kappa-B (NF-κB) and toll-like receptor 4 (TLR4) in jejunal mucosal, cysteine protease-1 (Caspase-1), Caspase-3 and NOD-like receptor protein 3 (NLRP3) in liver was significantly reduced (P<0.05). In summary, dietary supplementation with GUE and Lac can improve the intestinal morphology, immune and antioxidant functions, inhibit inflammatory response and apoptosis in broilers, and the combined supplementation has a synergistic effect. This study provides a basis for the development and utilization of G. uralensis extract and L. acidophilus synbiotic.
[1] 候惠宁. 2023. 甘草多糖对肉鸡生长性能和肝脏抗氧化能力的影响[D]. 硕士学位论文, 河南科技大学, 导师: 张才, pp. 33-35. (Hou H N.2023. Effects of Glycyrrhiza polysaccharides on growth performance and liver antioxidant capacity of broilers[D]. Thesis for M.S., Henan University of Science and Technology, Supervisor: Zhang C, pp. 33-35.) [2] 候惠宁, 潘梦颖, 赵依一, 等. 2023. 甘草多糖对肉鸡肝脏抗氧化能力的影响[J]. 饲料工业, 44(10): 39-44. (Hou H N, Pan M Y, Zhao Y Y, et al.2023. Effects of Glycyrrhiza polysaccharide on antioxidant capacity of liver of broilers[J]. Feed Industry, 44(10): 39-44.) [3] 李杰, 徐彬, 卢敏, 等. 2016. 氧化应激对肉鸡的影响及其缓解技术研究进展[J]. 中国畜牧兽医, 43(02): 507-512. (Li J, Xu B, Lu M, et al.2016. Research progress of effect of oxidative stress on broiler and its mitigation technology[J]. China Animal Husbandry and Veterinary Medicine, 43(02): 507-512.) [4] 李帅兵, 符璐, 田程程, 等. 2023. 甘草提取物、乳酸菌及其联合添加对肉鸡生长性能、屠宰性能、肉品质、营养物质表观代谢率及血清生化指标的影响[J]. 动物营养学报, 35(05): 2956-2968. (Li S B, Fu L, Tian C C, et al.2023. Effects of Glycyrrhiza uralensis Extract, lactic acid bacteria and their combined supplementation on growth performance, slaughter performance, meat quality, nutrient apparent metabolic rates and serum biochemical indexes of broilers[J]. Chinese Journal of Animal Nutrition, 35(05): 2956-2968.) [5] 梁凯, 曹秉振. 2014. 线粒体调控的细胞凋亡研究进展[J]. 生物医学工程与临床, 18(05): 501-505. (Liang K, Cao B Z.2014. Progress on cell apoptosis of mitochondrial regulation[J]. Biomedical Engineering and Clinical Medicine, 18(05): 501-505.) [6] 屈圣富, 田琦, 梅华迪, 等. 2022. 厚朴酚对断奶仔猪生长性能、肝脏抗氧化功能及脂代谢的影响[J]. 动物营养学报, 34(05): 2872-83. (Qu S F, Tian Q, Mei H D, et al.2022. Effects of magnolol on growth performance, liver antioxidant function and lipid metabolism of weaned piglets[J]. Chinese Journal of Animal Nutrition, 34(05): 2872-83.) [7] 孙永波, 王亚, 萨仁娜, 等. 2017. 家禽肠道健康评价指标研究进展[J]. 动物营养学报, 29(12): 4266-72. (Sun Y B, Wang Y, Sa R N, et al.2017. Research progress on evaluation indicators of intestinal health in poultry[J]. Chinese Journal of Animal Nutrition, 29(12): 4266-72.) [8] 唐明红. 2021. 过氧化氢酶对黄羽肉鸡生长性能、肠道形态以及抗氧化能力的影响[J]. 动物营养学报, 33(07): 4153-61. (Tang M H.2021. Effects of catalase on growth performance, intestinal morphology and antioxidant capacity in yellow broilers[J]. Chinese Journal of Animal Nutrition, 33(07): 4153-61.) [9] 王方圆. 2020. 乳酸菌缓解采食呕吐毒素污染饲粮肉鸡肝脏毒性的研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 杨欣, pp. 29-30. (Wang F Y.2020. Study on Lactobacillus alleviate liver of broilers ingesting dietary contaminated by deoxynivalenol[D]. Thesis for M.S., Northwest Agriculture and Forestry University, Supervisor: Yang X, pp. 29-30.) [10] 王甜甜, 陈淳媛, 杨雷, 等. 2019. Nrf2/HO-1信号轴在氧化应激性疾病中的机制[J]. 中南大学学报(医学版), 44(01): 74-80. (Wang T T, Chen C Y, Yang L, et al.2019. Role of Nrf2/HO-1 signal axis in the mechanisms for oxidative stress-relevant diseases[J]. Journal of Central South Universit, 44(01): 74-80.) [11] 杨雪芬, 周桂莲. 2011. 氧化应激对鸡肠道健康的影响研究[J]. 中国家禽, 33(24): 7-11. (Yang X F, Zhou G L.2011. Study on the effect of oxidative stress on intestinal health of chickens[J]. China Poultry, 33(24): 7-11.) [12] Amaretti A, Nunzio M D, Pompei A, et al.2013. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities[J]. Applied Microbiology and Biotechnology, 97(2): 809-817. [13] Ayeka P A, Bian Y H, Githaiga P M, et al.2017. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice[J]. BMC Complementary and Alternative Medicine, 17(1): 536. [14] Bai K W, Feng C C, Jiang L Y, et al.2018. Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers[J]. Poultry Science, 97(7): 2312-2321. [15] Cesare A D, Sirri F, Manfreda G, et al.2017. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens[J]. PLOS ONE, 12(5): e0176309. [16] Chang H M, Loh T C, Foo H L, et al.2022. Lactiplantibacillus plantarum postbiotics: Alternative of antibiotic growth promoter to ameliorate gut health in broiler chickens[J]. Frontiers in Veterinary Science, 9: 883324. [17] Ding S J, Yan W X, Ma Y, et al.2020. The impact of probiotics on gut health via alternation of immune status of monogastric animals[J]. Animal Nutrition, 7(1): 24-30. [18] Fong W N, Li Q, Ji F F, et al.2023. Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis[J]. Gut, 72(12): 2272-2285. [19] Gao D W, Gao Z R, Zhu G H.2013. Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2[J]. Food & Function, 4(6): 982-989. [20] Ibrahim D, Sewid A H, Arisha A H, et al.2020. Influence of Glycyrrhiza glabra extract on growth, gene expression of gut integrity, and Campylobacter jejuni colonization in broiler chickens[J]. Frontiers in Veterinary Science, 7: 612063. [21] Ji X Y, Hou H N, Wang X Y, et al.2024. Effect of dietary Glycyrrhiza polysaccharides on growth performance, hepatic antioxidant capacity and anti-inflammatory capacity of broiler chickens[J]. Research in Veterinary Science, 167: 105114. [22] Kamalian A, Asl M S, Dolatshahi M, et al.2020. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways[J]. World Journal of Gastroenterology, 26(24): 3365-3400. [23] Karin M, Lin A N.2002. NF-kappaB at the crossroads of life and death[J]. Nature Immunology, 3(3): 221-227. [24] Klaenhammer T R, Altermann E, Pfeiler E, et al.2008. Functional genomics of probiotic Lactobacilli[J]. Journal of Clinical Gastroenterology, 42(2): S160-S162. [25] Kucharzik T, Lügering N, Pauels H G, et al.1998. IL-4, IL-10 and IL-13 down-regulate monocyte-chemoattracting protein-1 (MCP-1) production in activated intestinal epithelial cells[J]. Clinical and Experimental Immunology, 111(1): 152-157. [26] Lee S K, Choi B K, Kim Y H, et al.2006. Glucocorticoid-induced tumour necrosis factor receptor family-related receptor signalling exacerbates hapten-induced colitis by CD4+ T cells[J]. Immunology, 119(4): 479-487. [27] Li T T, Hua S Y, Ma J H, et al.2020. Spectrum-effect relationships of flavonoids in Fisch[J]. Journal of Analytical Methods in Chemistry, 2020: 8838290. [28] Li X M, Li J W, Yuan H T, et al.2024. Effect of supplementation with Glycyrrhiza uralensis extract and Lactobacillus acidophilus on growth performance and intestinal health in broiler chickens[J]. Frontiers in Veterinary Science, 11: 1436807. [29] Li Z, Wang W W, Liu D, et al.2018. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens[J]. Journal of Animal Science and Biotechnology, 9(1): 25. [30] Malhi H, Gores G J.2008. Cellular and molecular mechanisms of liver injury[J]. Gastroenterology, 134(6): 1641-1654. [31] MasBargues C, Escrivá C, Dromant M, et al.2021. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease[J]. Archives of Biochemistry and Biophysics, 709: 108941. [32] Miao L P, Gong Y J, Li H Y, et al.2020. Alterations in cecal microbiota and intestinal barrier function of laying hens fed on fluoride supplemented diets[J]. Ecotoxicology and Environmental Safety, 193(C): 110372. [33] Miceli V, Pampalone M, Frazziano G, et al.2018. Carnosine protects pancreatic beta cells and islets against oxidative stress damage[J]. Molecular and Cellular Endocrinology, 474: 105-118. [34] Mishra B, Jha R.2019. Oxidative stress in the poultry gut: Potential challenges and interventions[J]. Frontiers in Veterinary Science, 6: 60. [35] Muhammad S, Allah R, Sadiq B M, et al.2018. Investigating the antioxidant potential of licorice extracts obtained through different extraction modes[J]. Journal of Food Biochemistry, 42(2): e12466. [36] Nong K Y, Liu Y M, Fang X, et al.2023. Effects of the vitamin D3 on alleviating the oxidative stress induced by diquat in wenchang chickens[J]. Animals, 13(4): 711. [37] Park J S, Choi J W, Jhun J, et al.2018. Lactobacillus acidophilus improves intestinal inflammation in an acute colitis mouse model by regulation of Th17 and Treg cell balance and fibrosis development[J]. Journal of Medicinal Food, 21(3): 215-224. [38] Peng Q, Zeng X F, Zhu J L, et al.2016. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens[J]. Poultry Science, 95(4): 893-900. [39] Qiao Y Y, Liu C Z, Guo Y P, et al.2022. Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota[J]. Poultry Science, 101(7): 101905. [40] Song X Y, Lin Z Z, Yu C L, et al.2021. Effects of Lactobacillus plantarum on growth traits, slaughter performance, serum markers and intestinal bacterial community of Daheng broilers[J]. Journal of Animal Physiology and Animal Nutrition, 106(3): 575-85. [41] Souza M d, Baptista A A S, Valdiviezo M J J, et al.2020. Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers[J]. Toxicon, 185: 203-212. [42] Takhshid M A, Mehrabani D, Ai J, et al.2012. The healing effect of licorice extract in acetic acid-induced ulcerative colitis in rat model[J]. Comparative Clinical Pathology, 21(6): 1139-1144. [43] Viola J P, Rao A.1999. Molecular regulation of cytokine gene expression during the immune response[J]. Journal of Clinical Immunology, 19(2): 98-108. [44] Walters J, Pop C, Scott F L, et al.2009. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis[J]. The Biochemical Journal, 424(3): 335-345. [45] Wang L F, Liu C H, Chen M, et al.2015. A novel Lactobacillus plantarum strain P-8 activates beneficial immune response of broiler chickens[J]. International Immunopharmacology, 29(2): 901-907. [46] Wu T Y, Khor T O, Saw C L L, et al.2011. Anti-inflammatory/Anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis[J]. The AAPS Journal, 13(1): 11-13. [47] Wu Y, Wu C Y, Che Y Y, et al.2022. Effects of Glycyrrhiza polysaccharides on chickens' intestinal health and homeostasis[J]. Frontiers in Veterinary Science, 9: 891429. [48] Wu Y P, Wang B K, Zeng Z H, et al.2019. Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers[J]. Poultry Science, 98(10): 5028-39. [49] Wu Z K, Yang K X, Zhang A R, et al.2021. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157[J]. Poultry Science, 100(9): 101323. [50] Yang R, Yuan B C, Ma Y S, et al.2017. The anti-inflammatory activity of licorice, a widely used Chinese herb[J]. Pharmaceutical Biology, 55(1): 15-18. [51] Yin S G, You T, Tang J Y, et al.2022. Dietary licorice flavonoids powder improves serum antioxidant capacity and immune organ inflammatory responses in weaned piglets[J]. Frontiers in Veterinary Science, 9: 942253. [52] You T, Tang J Y, Yin S G, et al.2022. Effect of dietary licorice flavonoids powder on performance, intestinal immunity and health of weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 107(1): 147-156. [53] Zhang C, Li C X, Shao Q, et al.2020. Effects of Glycyrrhiza polysaccharide in diet on growth performance, serum antioxidant capacity, and biochemistry of broilers[J]. Poultry Science, 100(3): 100927. [54] Zhang C, Li C X, Zhao P L, et al.2022. Effects of dietary Glycyrrhiza polysaccharide supplementation on growth performance, intestinal antioxidants, immunity and microbiota in weaned piglets[J]. Animal Biotechnology, 34(7): 11-12. [55] Zhang C S, Wang S L, Han Y S, et al.2024. Effects of crude extract of Glycyrrhiza Radix and Atractylodes macrocephala on immune and antioxidant capacity of SPF white leghorn chickens in an oxidative stress model[J]. Antioxidants, 13(5): 578. [56] Zhong C F, Chen C Y, Gao X, et al.2022. Multi-omics profiling reveals comprehensive microbe-plant-metabolite regulation patterns for medicinal plant Glycyrrhiza uralensis Fisch[J]. Plant Biotechnology Journal, 20(10): 1874-1887. [57] Zou B, Zhang S, Zhao J, et al.2023. Glycyrrhetinic acid attenuates endoplasmic reticulum stress-induced hepatocyte apoptosis via CHOP/DR5/Caspase 8 pathway in cholestasis[J]. European Journal of Pharmacology, 961: 176193.