Abstract:Rainbow trout (Oncorhynchus mykiss) is extremely sensitive to hypoxia, and its antioxidant capacity and apoptosis are affected by hypoxia environments. To understand the effects of hypoxia stress on the heart of rainbow trout, antioxidant and apoptotic gene expression were measured using enzyme activity assay and qRT-PCR during moderate hypoxia (4.5±0.1 mg/L) and severe hypoxia (3.0±0.1 mg/L) stress for 4, 8, 12, 24 h, 1 month, and reoxygenation (8.5±0.1 mg/L) for 12 and 24 h. The results showed that total superoxide dismutase (T-SOD) and catalases (CAT) activities were significantly reduced at 24 h and 1 month, malondialdehyde (MDA) content was significantly increased at 12 h (P<0.05) under severe hypoxia stress; T-SOD, CAT and total antioxidant capacity (T-AOC) activities were gradually increased under moderate hypoxia stress. Compared with the control group, total protein (TP) content was significantly decreased after 1 month of hypoxia stress (P<0.05). The expression of antioxidant-related genes Cu/Zn-SOD (cu/zn-sod) and Mn-SOD (mn-sod) were significantly decreased under severe hypoxia and moderate hypoxia stress compared with the control group (P<0.05); the expression of cat was significantly decreased at 4, 8 and 12 h under severe hypoxia (P<0.05). After severe hypoxia stress, the expression of apoptosis-related gene B-cell lymphoma-2 (Bcl-2) increased significantly under short-term hypoxia stress compared with the control group, while the expression of Bcl-2-associated X (Bax) showed no significant difference, and the expression of caspase-3 (casp3) and tumor suppressor gene 53 (p53) decreased significantly at 12 h (P<0.05). Acid phosphatase (ACP) and alkaline phosphatase (AKP) were significantly higher than those of the control group at 12 h under severe hypoxia stress and moderate hypoxia stress (P<0.05). The above results suggested that rainbow trout heart could reduce oxidative damage by regulating the activities of antioxidant enzymes and the expression of apoptosis-related genes under different concentrations of hypoxia. This study provides a theoretical basis for further elucidating the oxidative stress mechanism in rainbow trout heart under hypoxia stress.
[1] 陈付菊, 付生云, 马敏, 等. 2023. 低氧胁迫对青海湖裸鲤端脑抗氧化酶活性、细胞凋亡及相关基因表达的影响[J]. 水生生物学报, 47(04): 572-580. (Chen F J, Fu S Y, Ma M, et al.2023. Hypoxia stress on the activity of antioxidant enzymes, neuronal apoptosis and expression of related genes of telencephalon in Gymnocypris przewalskii[J]. Acta Hydrobiologica Sinica, 47(04): 572-580.) [2] 陈静怡, 王晓雯, 朱华, 等. 2018. 不同水温下低氧胁迫对西伯利亚鲟生理状态的影响[J]. 水产科技情报, 45(02): 70-76. (Chen J Y, Wang X W, Zhu H, et al.2018. Effects of hypoxia on physiological status of siberian sturgeon Acipenser baeri juveniles under different temperature[J]. Fisheries Science & Technology Information, 45(02): 70-76.) [3] 程景颢, 李谣, 沈铭浩, 等. 2022. 低氧胁迫和恢复对杂交黄颡鱼'黄优1号'肠道组织的影响[J]. 水生生物学报, 46(11): 1598-1608. (Cheng J H, Li Y, Shen M H, et al.2022. Effects of hypoxia stress and recovery on intestinal tissue of hybrid yellow catfish 'Huangyou-1' (Pelteobagrus vachelli ♂ × Pelteobagrus fulvidraco ♀)[J]. Acta Hydrobiologica Sinica, 46(11): 1598-1608.) [4] 丁晨雨, 胡利双, 李云, 等. 2018. 低氧胁迫对鲢心肌细胞凋亡及其调控基因bax、bcl-2表达的影响[J]. 淡水渔业, 48(02): 10-15. (Ding C Y, Hu L S, Li Y, et al.2018. Effects of hypoxia stress on cardiomyocyte apoptosis and the control for bax, bcl-2 expressions in Hypophthalmichthys molitrix[J]. Freshwater Fisheries, 48(02): 10-15.) [5] 丁茹馨. 2022. 低氧胁迫对光棘球海胆的影响及分子响应机制[D]. 硕士学位论文, 浙江海洋大学,导师: 李宝泉; 沈斌. pp. 27-28. (Ding R X.2022. Effects of hypoxic stress on Mesocentrotus nudus and its molecular response[D]. Thesis for M.S., Zhejiang Ocean University, Supervisor: Li B Q, Shen B, pp. 27-28.) [6] 李根瑞, 任利华, 孙国华, 等. 2016. 低溶氧胁迫对刺参(Apostichopus japonicus)氧化应激指标的影响[J]. 渔业科学进展, 37(05): 133-139. (Li G R, Ren L H, SuncG H, et al.2016. Effects of hypoxic stress on oxidative stress indices in Apostichopus japonicus[J]. Progress in Fishery Sciences, 37(05): 133-139.) [7] 李谣, 杨智茹, 程景颢, 等. 2023. 低氧胁迫和复氧对长吻鮠鳃组织低氧应答基因和生理生化指标的影响[J]. 中国农学通报, 39(02): 107-116. (Li Y, Yang Z R, Cheng J H, et al.2023. Effects of hypoxic stress and reoxygenation on hypoxic response genes and physiological and biochemical indexes in the gill tissue of Leiocassis longirostris[J]. Chinese Agricultural Science Bulletin, 39(02): 107-116.) [8] 裴雪莹. 2020. 杂交黄颡鱼'黄优1号'应对低氧胁迫的生理响应及基因表达研究[D]. 硕士学位论文, 南京师范大学, 导师: 尹邵武; 周国勤, pp. 46-47. (Pei X Y.2020. Physiological response and gene expression of hybrid yellow catfish 'Huangyou 1' to hypoxia stress[D]. Thesis for M.S., Nanjing Normal University, Supervisor: Yin S W; Zhou G Q, pp. 46-47.) [9] 区又君, 陈世喜, 王鹏飞, 等. 2017. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学, 13(03): 120-124. (Ou Y J, Chen S X, Wang P F, et al.2017. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hypoxia stress[J]. South China Fisheries Science, 13(03): 120-124.) [10] 区又君, 范春燕, 李加儿, 等. 2014. 急性低氧胁迫对卵形鲳鲹选育群体血液生化指标的影响[J]. 海洋学报(中文版), 36(04): 126-131. (Ou Y J, Fan C Y, Li J E, et al.2014. Acute hypoxia stress on blood biochemical indexes in selective group of Trachinotus ovatus[J]. Acta Oceanologica Sinica, 36(04): 126-131.) [11] 石华洪, 苗亮, 李明云, 等. 2019. 水体低氧对香鱼幼鱼生长和消化酶活性的影响[J]. 生命科学研究, 23(06): 469-475. (Shi H H, Miao L, Li M Y, et al.2019. Effects of hypoxia on growth and activities of digestive enzymes of juvenile sweet fish (Plecoglossus altivelis)[J]. Life Science Research, 23(06): 469-475.) [12] 宋芹芹, 李玉虎, 周海龙. 2015. 凡纳滨对虾应答低氧-复氧胁迫免疫相关酶活力的时空变化[J]. 热带生物学报, 6(04): 353-358. (Song Q Q, Li Y H, Zhou H L, 2015. Spatial and temporal changes of immune-related enzymes activities in Litopenaeus vannamei under hypoxia-reoxygenation stress[J]. Journal of Tropical Biology, 6(04): 353-358.) [13] 吴鑫杰, 陈楠, 黄春筱, 等. 2016. 低氧对团头鲂心肌细胞凋亡及抗氧化酶活性的影响[J]. 华中农业大学学报, 35(03): 108-113. (Wu X J, Chen N, Huang C X, et al.2016. Effects of hypoxia on cardiomyocyte apoptosis and activity of antioxidant enzymes in Megalobrama amblycephala heart[J]. Journal of Huazhong Agricultural University, 35(03): 108-113.) [14] 相智巍, 姜柯君, 褚洪永, 等. 2023. 不同盐度对珍珠龙胆石斑鱼幼鱼生长、消化酶活性和非特异性免疫的影响[J]. 渔业科学进展, 44(03): 64-73. (Xiang Z W, Jiang K J, Chu H Y, et al.2023. Effects of salinity on growth performance, digestive enzymes, and nonspecific immunity in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂)[J]. Progress in Fishery Sciences, 44(03): 64-73.) [15] 徐畅. 2020. 急性低氧胁迫对翘嘴鳜部分组织酶活性及相关基因表达的影响[D]. 硕士学位论文, 南京农业大学, 导师: 邴旭文, pp. 33-34. (Xu C.2020. Effects of acute hypoxia stress on tissue enzyme activities and related gene expression in mandarin fish (Siniperca chuatsi)[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Bing X W, pp. 33-34.) [16] 徐贺, 陈秀梅, 王桂芹, 等. 2016. 低氧胁迫在水产养殖中的研究进展[J]. 饲料工业, 37(02): 33-37. (Xu H, Chen X M, Wang G Q, et al.2016. Research progress of hypoxia on aquaculture[J]. Feed Industry, 37(02): 33-37.) [17] 杨宇婷. 2022. 洛氏鱥低氧耐受性及低氧诱导因子hif-αs的分子特性[D]. 硕士学位论文, 哈尔滨师范大学, 导师: 母伟杰, pp. 31-32. (Yang Y T.2022. Hypoxia tolerance and molecular properties of hypoxia-inducible factor hif-αs in Phoxinus lagowskii[D]. Thesis for M.S., Harbin Normal University, Supervisor: MU W J, pp. 31-32.) [18] 张国松. 2017. 瓦氏黄颡鱼(Pelteobagrus vachelli)应对低氧胁迫的分子机制研究[D]. 博士学位论文, 南京师范大学, 导师: 尹绍武, pp. 107-108. (Zhang G S.2017. Molecular mechanisms of response to hypoxic stress in Pelteobagrus vachelli[D]. Thesis for Ph.D., Nanjing Normal University, Supervisor: Yin S W, pp. 107-108.) [19] 张美东, 凌晨, 沙航, 等. 2022. 低氧-复氧胁迫对鲢抗氧化酶活性及cu/zn-sod和mn-sod基因表达的影响[J]. 水生生物学报, 46(04): 498-506. (Zhang M D, Ling C, Sha H, et al.2022. Hypoxia-reoxygenation stress on antioxidant enzyme activity and expression of cu/zn-sod and mn-sod genes in silver carp (Hypophthalmichthys molitrix)[J]. Acta Hydrobiologica Sinica, 46(04): 498-506.) [20] 张倩, 黄进强, 权金强, 等. 2020. 急性低氧胁迫和复氧对鲫鱼氧化应激的影响[J]. 水产科学, 39(05): 649-656. (Zhang Q, Huang J Q, Quan J Q, et al.2020. Effects of acute hypoxia and reoxygenation on oxidative stress in crucian carp Carassius auratus[J]. Fisheries Science, 39(05): 649-656.) [21] Aksakal E, Ekinci D.2021. Effects of hypoxia and hyperoxia on growth parameters and transcription levels of growth, immune system and stress related genes in rainbow trout[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 262: 111060. [22] Chipuk J E, Green D R.2009. Puma cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis[J]. Cell Cycle, 8(17): 2692-2696. [23] Coimbra-Costa D, Alva N, Duran M, et al.2017. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain[J]. Redox Biology, 2017(12): 216-225. [24] Frei H, Würgler E F.1996. Induction of somatic mutation and recombination by four inhibitors of eukaryotic topoisomerases assayed in the wing spot test of Drosophila melanogaster[J]. Mutagenesis, 11(4): 315-325. [25] Geng X, Feng J B, Liu S K, et al.2014. Transcriptional regulation of hypoxia inducible factors alpha (hif-α) and their inhibiting factor (fih-1) of channel catfish (Ictalurus punctatus) under hypoxia[J]. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 169: 38-50. [26] He Y, Yu H D, Zhang Z Y, et al.2022. Effects of chronic hypoxia on growth performance, antioxidant capacity and protein turnover of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 561: 738673. [27] Hou Z S, Wen H S, Li J F, et al.2020. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Science of the Total Environment, 705: 135272. [28] Jenny J, Francus P, Normandeau A, et al.2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure[J]. Global Change Biology, 22: 1481-1489. [29] Karpinich N O, Tafani M, Rothman R J, et al.2002. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochromec[J]. Journal of Biological Chemistry, 277(19): 16547-16552. [30] Nilsson G E, Östlund-Nilsson S.2004. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271: 1-4. [31] Siques P, Brito J, Pena E.2018. Reactive oxygen species and pulmonary vasculature during hypobaric hypoxia[J]. Frontiers in Physiology, 9: 865. [32] Trasviña-Arenas C H, Garcia-Triana A, Peregrino-Uriarte A Bet al.2013. White shrimp Litopenaeus vannamei catalase: Gene structure, expression and activity under hypoxia and reoxygenation[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 164(1): 44-52. [33] Welker A F, Campos E G, Cardoso L A, et al.2012. Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant nile tilapia[J]. Comparative Biochemistryand Physiology Part B: Biochemistry & Molecular Biology, 302(9): R1111-R1118. [34] Wulff T, Jokumsen A, Højrup P, et al.2012. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia[J]. Journal of Proteomics, 75(8): 2342-2351. [35] Wu S J, Huang J Q, Li Y J, et al.2023. Dynamic and systemic regulatory mechanisms in rainbow trout (Oncorhynchus mykiss) in response to acute hypoxia and reoxygenation stress[J]. Aquaculture, 572: 739540. [36] Xiao K, Wang X, Wang M M, et al.2023. Metabolism, antioxidant and immunity in acute and chronic hypoxic stress and the improving effect of vitamin C in the channel catfish (Ictalurus punctatus)[J]. Fish Physiology and Biochemistry, 50(1): 183-196. [37] Yang S, Wu H, He K, et al.2019. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress[J]. Science of the Total Environment, 666: 1071-1079. [38] Yuan Z H, Liu S K, Yao J, et al.2016. Expression of bcl-2 genes in channel catfish after bacterial infection and hypoxia stress[J]. Developmental and Comparative Immunology, 65: 79-90. [39] Zenteno-Savín T, Saldierna R, Ahuejote-Sandoval M.2006. Superoxide radical production in response to environmental hypoxia in cultured shrimp[J]. Comparative Biochemistry and Physiology, 142(3-4): 301-308.