Effects of Cd2+ and Zn2+ Stress on Antioxidant System and Non-specific Immune Function in Gymnocypris przewalskii
WANG Rong1,2, LI Chang-Zhong1,2, ZHAO Jin1,2, MA Shu-Xiong1,2, JIA Chun-Yan1,2, GOU Hua-Yu1, LI Lan-Ying1, CHEN Yan-Xia1,2, QI Hong-Fang3, JIN Wen-Jie1,2*
1 College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; 2 Key Laboratory of Plateau Cold-water Fish Culture and Eco-environmental Conservation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Xining 810016, China; 3 Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, Rescue Center of Gymnocypris przewalskii, Xining 810016, China
Abstract:Gymnocypris przewalskii is a kind of Schizothoracinae with low temperature and salt and alkali resistance. Heavy metal stress is one of the main abiotic stresses that limit the anadromous migration and breeding of G. przewalskii. To investigate the effects of Cd2+ and Zn2+ stress on the acute toxicity, antioxidant ability and non-specific immune function of G. przewalskii. G. przewalskii was exposed to different concentrations of Cd2+ and Zn2+ at 24, 48, 72, and 96 h.The semi-lethal concentration for 50% (LC50) and the safe concentration (SC) were determined by static bioassay. The activities of superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), and alkaline phosphatase (AKP) in gills, kidney and liver tissues of G. przewalskii were detected by the automatic microplate reader, and the relative expression of NF-κB related immune genes, such as transforming growth factor β-activatrd kinase 1 (TAK1), inhibitory nuclear factor kinase-κB α (IKKα), inhibitor nuclear factor-κB α (IκBα), nuclear transcription factor-κB (NF-κB), interleukin 8 (IL-8), zinc finger protein A20 (A20), and tumor necrosis factor α (TNF-α) were detected by qPCR. The results showed that the LC50 of G. przewalskii under Cd2+ stress for 24, 48, 72, and 96 h were 1.455, 1.022, 0.579, and 0.428 mg/L, respectively. The LC50 of G. przewalskii under Zn2+ stress for 24, 48, 72, and 96 h were 4.634, 2.797, 1.843, and 1.157 mg/L, respectively. The SC of Cd2+ and Zn2+ were 0.004 3 and 0.115 7 mg/L, respectively, and the toxicity magnitude was Cd2+>Zn2+. After Cd2+ and Zn2+ stress, the activities of SOD and CAT in the kidney and liver of G. przewalskii shown varying degrees of response to Cd2+ and Zn2+ stress, but in high concentration, the activities were higher at 24 h in the gills. The activities of ACP were significantly reduced (P<0.05) in the gills and kidney,and the activities of AKP were significantly decreased (P<0.05) in the gills and liver. The expression of TAK1, IκBα, NF-κB, and IL-8 were highly up regulated (P<0.05) in gills, kidney, and liver, while the expressions of IKKα, A20, and TNF-α were relatively lower, especially in the liver. In conclusion, both Cd2+ and Zn2+ stress could induce oxidative stress and inflammatory response in G. przewalskii, activate the system of antioxidant defense and non-specific immune, regulate immune mechanism to cope with the adverse external environment. This study provides basis for further exploring the molecular mechanism of physiological response and artificial proliferation and release of G. przewalskii under heavy metal stress.
王蓉, 李长忠, 赵静, 马淑兄, 贾春艳, 勾化宇, 李兰英, 陈艳霞, 祁洪芳, 金文杰. Cd2+和Zn2+胁迫对青海湖裸鲤抗氧化系统和非特异性免疫机能的影响[J]. 农业生物技术学报, 2024, 32(12): 2808-2821.
WANG Rong, LI Chang-Zhong, ZHAO Jin, MA Shu-Xiong, JIA Chun-Yan, GOU Hua-Yu, LI Lan-Ying, CHEN Yan-Xia, QI Hong-Fang, JIN Wen-Jie. Effects of Cd2+ and Zn2+ Stress on Antioxidant System and Non-specific Immune Function in Gymnocypris przewalskii. 农业生物技术学报, 2024, 32(12): 2808-2821.
[1] 鲍枳月, 王伟. 2020. 重金属对鱼类生态毒理学效应研究进展[J]. 经济动物学报, 24(03): 167-173. (Bao Z Y, Wang W.Research advance on ecotoxicological effects of heavy metals in fishes[J]. Journal of Economic Animal, 24(03): 167-173.) [2] 陈立伟. 2011. 镉积累对黄颡鱼酶活及金属硫蛋白表达的影响[D]. 硕士学位论文, 河北大学, 导师: 谢松, pp. 13-37. (Chen L W.2011. Effects of cadmium accumulation on enzyme activity and metallothionein expression of Pelteobagrus fulvidraco[D]. Thesis for M.S., S Hebei University, Supervisor: Xie S, pp. 13-37.) [3] 崔雯婷. 2022. 海水酸化和镉复合胁迫下褐牙鲆(Paralichthys olivaceus)仔幼鱼抗氧化防御响应和免疫应答[D]. 博士学位论文, 中国科学院海洋研究所, 导师: 窦硕增, pp. 43-113. (Cui W T.2020. The antioxidative defense and immune responses of flounder (Paralichthys olivaceus) larvae and juveniles to seawater acidification and cadmium exposure[D]. Thesis for Ph.D., Institute of Oceanology, Chinese Academy of Sciences, Supervisor: Dou S Z, pp. 43-113.) [4] 高金伟, 吴浩, 李绍明, 等. 2022. 氨氮和镉胁迫对芙蓉鲤鲫抗氧化系统和免疫机能的影响[J].水生生物学报, 46(04):448-456. (Gao J W, Wu H, Li S M, et al, Ammonia nitrogen and cadmium stress on antioxidant system and immune function of FuRong Crucian Carp[J]. Acta Hydrobiologica Sinica, 46(04): 448-456.) [5] 郭赛男. 2018. 生命周期环境剂量镉暴露对斑马鱼免疫反应的影响研究[D]. 硕士学位论文, 浙江海洋大学, 导师: 吴常文, pp. 20-35. (Guo S N.2018. Immune effects in zebrafish after full life-cycle exposure to environmentally relevant concentrations of cadmium[D]. Thesis for M.S., Zhejiang Ocean University, Supervisor: Wu C W, pp. 20-35.) [6] 何亮银, 史晓丽, 周逢芳, 等. 2022. 低盐胁迫对大黄鱼非特异性免疫酶活力的影响[J]. 应用海洋学学报, 41(02): 347-354. (He L Y, Shi X L, Zhou F F, et al.Effects of low salinity stress on non-specific immunity enzyme activity of Larimichthys crocea[J]. Journal of Applied of Oceanography, 41(02): 347-354.) [7] 黄成裕. 2022. 环境因子对双带隐带丽鱼(Apistogramma bitaeniata)生长、代谢和免疫影响的研究[D]. 硕士学位论文, 上海海洋大学, 导师: 唐建业, pp. 9-11. (Huang C Y.2022. Study on effects of environmental factors on growth, metabolism and immunity of Apistogramma bitaeniata[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Tang J Y, pp. 9-11.) [8] 黄伟. 2010. 汞、铅、锌对褐牙鲆(Paralichthys olivaceus)早期发育过程毒理作用的研究[D]. 博士学位论文, 中国科学院海洋研究所, 导师: 窦硕增, pp. 12-25. (Huang W.2020. Toxic effects of mercury, lead and zinc on early life stage of Paralichthys olivaceus[D]. Thesis for Ph.D., Institute of Oceanology, Chinese Academy of Sciences, Supervisor: Dou S Z, pp. 12-25.) [9] 孔志明. 2017. 环境毒理学[M]. 南京大学出版社. 南京. pp. 267-270. (Kong Z M.2017. Environmental Toxicology[M]. Nanjing University Press. Nanjing. pp. 267-270.) [10] 李翠萍, 吴民耀, 王宏元. 2012. 3种半数致死浓度计算方法之比较[J]. 动物医学进展, 33(09): 89-92. (Li C P, Wu M Y, Wang H Y.2012. LC50 caculated by kochi, probit analysis and linear regression methods[J]. Progress in Veterinary Medicine, 33(09): 89-92.) [11] 李恒顺, 司瑜, 王宣刚, 等. 2023. 牙鲆TAK1基因的表达分析及免疫功能探究[J]. 中国海洋大学学报, 53(03): 152-165. (Li H S, Si Y, Wang X G, et al.2023. Expression analysis and immune function characterization of TAK1 in Japanese flounder[J]. Periodical of Ocean University of China, 53(03): 152-165.) [12] 李琦. 2023. 水体中重金属(Cu2+、Cr6+和Cd2+)联合对斑马鱼成鱼的生物毒性效应[D]. 硕士学位论文, 山东农业大学, 导师: 王纪亭, pp. 49-51. (Li Q.2023. Biotoxic effects of heavy metals (Cu2+, Cr6+ and Cd2+) combined in water on adult zebrafish[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Wang J T, pp. 49-51.) [13] 李少华, 王学全, 兰岚, 等. 2016. 青海湖流域主要河口区沉积物中重金属元素生态风险评价[J]. 生态与农村环境学报, 32(6): 940-945. (Li S H, Wang X Q, Lan L, et al.2016. Distribution characteristics and pollution evaluation of heavy metals in riverr ecosystems of Qinghai Lake Basin[J]. Journal of Ecology and Rural Environment, 32(6): 940-945.) [14] 李梓瑄, 金文杰, 李长忠. 2023, 低浓度铜铅胁迫对1龄青海湖裸鲤组织中抗氧化指标的影响[J]. 水产学杂志, 36(04): 38-45. (Li Z X, Jin W J, Li C Z.2023. Effects of low-concentration copper and lead stress on antioxidant-ralated indices of one-year-old Gymnocypris przewalskii[J]. Chinese Journal of Fisheries, 36(04): 38-45.) [15] 刘念, 周俊豪, 杨映. 2022, NF-κB信号通路在硬骨鱼免疫中的作用研究进展[J]. 水产科学, 41(03): 509-516. (Liu N, Zhou J H, Yang Y.2022. A review: Research progress on role of NF-κB signaling pathway in teleost immunity[J]. Fisheries Science, 41(03): 509-516.) [16] 刘银华, 何国森, 陈度煌, 等. 2018. 铬、锌、镉对黄颡鱼“全雄1号”的急性毒性及安全评价[J].渔业研究, 40(01): 66-70. (Liu Y H, He G S, Chen D H, et al.2018. Acute toxicity and safe assessment of Cr, Zn and Cd to “All Male No. 1” seed of Pelteobaqrus fulvidraco[J]. Journal of Fisheries Research, 40(01): 66-70.) [17] 龙昱, 罗永巨, 肖俊, 等. 2016.重金属胁迫对鱼类影响的研究进展[J].南方农业学报, 47(09): 1608-1614. (Long Y, Luo J Y, Xiao J, et al.2016. Research advances in effects of heavy metal stress on fish[J]. Guangxi Agricultural Sciences, 47(09): 1608-1614.) [18] 罗其勇. 2018.重金属暴露引起鱼体氧化应激反应的研究进展[J].安徽农业科学, 46(25): 32-35. (Luo Q Y, 2018, Research progress of oxidative stress in fish induced by exposure to heavy metals[J]. Journal of Anhui Agricultural Sciences 46(25): 32-35.) [19] 母红霞, 李蕾. 2022 重金属镉、锌、铬对翘嘴鲌幼鱼急性与联合毒性效应试验[J]. 渔业研究, 44(01): 69-77. (Mu H X, Li L.2022. The acute and joint toxicity effects of cadmium, zinc and chromium on Culter alburnus Basilewsky larva[J]. Journal of Fisheries Research, 44(01): 69-77.) [20] 冉凤霞, 金文杰, 端智卓玛, 等. 2021. Zn2+胁迫对花斑裸鲤抗氧化关键基因表达和抗氧化酶活性的影响[J]. 大连海洋大学学报, 36(03):406-413. (Ran F X, Jin W J, Duan Z Z M, et al.2021. Effects of Zn2+ stress on expression of key antioxidant genes and antioxidant enzyme activities in eckloni naked carp Gymnocypris eckloni[J]. Journal of DaLian Ocean University, 36(03): 406-413.) [21] 史建全, 祁洪芳, 杨建新, 等. 2016. 青海湖裸鲤增殖放流效果评估[J]. 农技服务, 33(12): 128-129. (Shi J Q, Qi H F, Yang J X, et al.2016. Evaluation of the effect of breeding and releasing Gymnocypris przewalskii[J]. Agricultural Technology Service, 33(12): 128-129.) [22] 石金铭, 王雪琪, 冯林, 等. 2018. 四氯乙烯和镉联合胁迫对草鱼SOD和POD活性影响[J]. 水生态学杂志, 39(01): 98-104. (Shi J M, Wang X Q, Feng L, et al.2018. Combined effect of perchloroethylene and Cd2+ on superoxide dismutase (SOD) and peroxidase (POD) aactivities in grass carp[J]. Journal of Hydroecology, 39(01): 98-104.) [23] 谈龙飞, 徐东坡, 祁洪芳, 等. 2022. 沙柳河青海湖裸鲤早期资源发生量及时空分布[J]. 水生生物学报, 46(02): 265-272. (Tan L F, Xu D P, Qi H F, Yang J X, et al.2022. The standing crop and growth characteristics of larvae in early life history stages of Gprzewalskii przewalskii in Shaliu River[J]. Acta Hydrobiologica Sinica, 46(02): 265-272.) [24] 邢艳帅, 朱桂芬. 2017. 重金属对水生生物的生态毒理效应及生物耐受机制研究进展[J]. 生态毒理学报, 12(03): 13-26. (Xing Y S, Zhu G.2017. Advances on ecotoxicological effects of heavy metals to aquatic organisms and the tolerance mechanisms of aquatic organisms[J]. Asian Journal of Ecotoxicolog, 12(03): 13-26.) [25] 殷健. 2014. 重金属对斑马鱼的毒性效应及作用机制研究[D]. 博士学位论文, 北京协和医学院, 导师: 王爱平, pp. 31-53. (Yin J.2018. Study on toxic effects and mechanism of heavy metals on zebrafish[D]. Thesis for Ph.D., Peking Union Medical College, Supervisor: Wang A P, pp. 31-53.) [26] 余秋果. 2017. 铜、镉及其联合暴露对稀有鮈鲫氧化应激和细胞凋亡的影响[D]. 硕士学位论文, 西北农林科技大学, 导师: 王在熙, pp. 8-17. (Yu Q G.2017. Effects of individual and co-exposure of copper and cadmium on oxidative stress and apoptosis in rare minnow Gobiocypris rarus[D]. Thesis for M.S., Northwest A&F University, Supervisor: Wang Z X, pp. 8-17.) [27] 张雅然, 车霏霏, 付正辉, 等. 2022. 青海湖沉积物重金属分布及其潜在生态风险分析[J]. 环境科学, 43(06):3037-3047. (Zhang Y R, Che F F, Fu Z H, et al.2022. Distribution and potential ecological risk assessment of heavy metals in sediments of lake Qinghai[J]. Environmental Science, 43(06):3037-3047.) [28] 朱奕龙. 2018.青海湖裸鲤生长与繁殖的研究[D]. 硕士学位论文, 西南大学, 导师: 姚维志, pp. 1-8. (Zhu Y L.2018. Research on growth and reproduction of Gymnocypris przewalskii[D]. Thesis for M.S., Southwest University, Supervisor: Yao W Z, pp. 1-8.) [29] Adam M A, Maftuch M, Kilawati Y.et al.2019. The effect of cadmium exposure on the cytoskeleton and morphology of the gill chloride cells in juvenile mosquito fish (Gambusia affinis)[J]. The Egyptian Journal of Aquatic Research, 45(4): 337-343. [30] Ajibade A A, Wang H Y, Wang R F.2013. Cell type-specific function of TAK1 in innate immune signaling[J]. Trends in Immunology, 34(7): 307-316. [31] Benaduce A P, Kochhann D, Flores E M, et al.2008. Toxicity of cadmium for silver catfish Rhamdia quele (Heptapteridae) embryos and larvae at different alkalinities[J]. Archives of Environmental Contamination and Toxicology, 54(2): 274-282. [32] Dalvi R S, Das T, Debnath D, et al.2017. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures[J]. Journal of Thermal Biology. 65:32-40. [33] Hayden M S, Ghosh S.2008. Shared principles in NF-kappaB signaling[J]. Cell, 132(3): 344-362. [34] Hinz M, Scheidereit C.2014. The IκB kinase complex in NF-κB regulation and beyond[J]. EMBO Reports, 15(1): 46-61. [35] Jia R, Cao L P, Du J L, et al.2014. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio)[J]. Aquatic Toxicology, 152: 11-19. [36] Jin W, Li Z, Ran F, et al.2021. Transcriptome analysis provides insights into copper toxicology in piebald naked carp (Gymnocypris eckloni)[J]. BMC Genomics, 22(1):416. [37] Jomova K, Valko M.2011. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 283(2-3): 65-87. [38] Lawrence T, Fong C.2010. The resolution of inflammation: Anti-inflammatory roles for NF-kappaB[J]. The International Journal of Biochemistry & Cell Biology, 42(4): 519-523. [39] Li H, Di G, Zhang Y, et al.2019. MicroRNA-155 and microRNA-181a, via HO-1, participate in regulating the immunotoxicity of cadmium in the kidneys of exposed Cyprinus carpio[J]. Fish & Shellfish Immunology[J], 95: 473-480. [40] Lu C, Lv Y, Kou G, et al.2022. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 243, 113993. [41] Miesco L, Rossi M, Salvati L.2019. Role of copper in superoxide dismutase 1 structure and function[J]. Metallomics, 11(6): 436-443. [42] O'Dea E, Hoffmann A.2010. The regulatory logic of the NF-kappaB signaling system[J]. Cold Spring Harbor Perspectives in Biology, 2(1): a000216. [43] Prasad A. S, Bao B, Beck F W, et al.2011. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κB[J]. Nutrition (Burbank, Los Angeles County, Calif.), 27(7-8): 816-823. [44] Qiu W, Hu J, Magnuson J T, et al.2020. Evidence linking exposure of fish primary macrophages to antibiotics activates the NF-kB pathway[J]. Environment International,138: 105624. [45] Shu O M., Yakub N, Ramle N A.et al.2015. Comparative toxicity of eight metals on freshwater fish[J]. Toxicology and Industrial Health, 31(9): 773-782. [46] Si L F, Wang C C, Guo S N, et al.2019. The lagged effects of environmentally relevant zinc on non-specific immunity in zebrafish[J]. Chemosphere, 214: 85-93. [47] Walker K F, Dunn I G, Edwards D, et al.1995. A fishery in a changing lake environment: The naked carp Gymnocypris przewalskii (Kessler)(Cyprinidae: Schizothoracinae) in Qinghai Hu, China[J]. International Journal of Salt Lake Research, 4(3): 169-222. [48] Wang H, Liang Y, Li S, et al.2013 Acute toxicity, respiratory reaction, and sensitivity of three cyprinid fish species caused by exposure to four heavy metals[J]. Public Library of Science, 8(6): e65282. [49] Wertz I E, O'Rourke, K M, et al.2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling[J]. Nature, 430(7000): 694-699. [50] Xiong F, Chen D, Duan X.2010. Threatened fishes of the world: Gymnocypris przewalskii (Kessler, 1876)(Cyprinidae: Schizothoracinae)[J]. Environmental Biology of Fishes, 87(4): 351-352. [51] Yamamoto M, Takeda K, 2008. Role of nuclear IκB proteins in the regulation of host immune responses[J]. Journal of Infection and Chemotherapy, 14(4): 265-269. [52] Yang J, Gong Y, Cai J, et al.2020. Chlorpyrifos induces redox imbalance-dependent inflammation in common carp lymphocyte through dysfunction of T-cell receptor γ[J]. Journal of Fish Diseases, 43(4): 423-430. [53] Yu F, Hou Z S, Luo H R, et al.2022. Zinc alters behavioral phenotypes, neurotransmitter signatures, and immune homeostasis in male zebrafish (Danio rerio)[J]. Science of The Total Environment, 828: 154099. [54] Zheng H, Guo Q, Duan X, et al.2019. L-arginine inhibited apoptosis of fish leukocytes via regulation of NF-κB-mediated inflammation, NO synthesis, and anti-oxidant capacity[J]. Biochimie, 158: 62-72.