The Effect of miR-133a_R+1 Regulation to ALDH5A1 Expression on Retained Placenta in Cows (Bos taurus)
WANG Yue, LYU Chen, YAO Dan, ZHAO Xing-Xu*, ZHANG Yong*
Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation/College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract:Micro RNA (miRNA) is involved in numerous physiological activities in mammals, with miR-133a playing a pivotal regulatory role in placental and uterine growth and development. miR-133a_R+1 and ALDH5A1 are differentially expressed in placental tissues of cows (Bos taurus) with retained placenta and may have a potential targeting regulatory relationship through sequencing and target gene prediction software. In this study, normal fetal placental tissue, RP placental tissue, and bovine endometrial epithelial cells (BEND) were used as experimental materials. Hematoxylin eosin (HE) staining was used to observe the pathological changes of placental tissue, and qRT-PCR was used to detect expression of miR-133a_R+1 and aldehyde dehydrogenase 5 family member A1 (ALDH5A1) in placental tissue. Immunohistochemistry (IHC) was used to detect the distribution of ALDH5A1 protein in placental tissue. Optimal transfection conditions was 100 nmol/L 133a_R+1 mimic for 12 h to establish a BEND cell model overexpressing miR-133a_R+1. qRT-PCR and Western blot were used to detect the expression of ALDH5A1 gene and its protein in the cells. The results showed that RP placental tissue villi were short, sparse, and fragmented. The expression level of miR-133a_R+1 mRNA in RP placenta tissue was extremely significantly up-regulated (P<0.01), ALDH5A1 was expressed in connective tissue and cytotrophoblast, and the expression level was extremely significantly down-regulated (P<0.01). The expression levels of ALDH5A1 gene and its protein in BEND cells transfected with miR-133a_R+1 mimic were extremely significantly downregulated (P<0.01). In summary, miR-133a_R+1 affected cow RP by targeting the expression of ALDH5A1 gene and its protein. This study provides corresponding theoretical basis for further exploring the mechanism of miRNA action on dairy cow RP.
汪玥, 吕琛, 姚丹, 赵兴绪, 张勇. miR-133a_R+1调控ALDH5A1的表达对奶牛胎衣不下的影响[J]. 农业生物技术学报, 2024, 32(11): 2564-2571.
WANG Yue, LYU Chen, YAO Dan, ZHAO Xing-Xu, ZHANG Yong. The Effect of miR-133a_R+1 Regulation to ALDH5A1 Expression on Retained Placenta in Cows (Bos taurus). 农业生物技术学报, 2024, 32(11): 2564-2571.
[1] 车思成. 2021. miR-184通过STC2-IGF1调控奶山羊子宫内膜上皮细胞凋亡的研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 曹斌云, pp.43-47. (Che S C, 2021. MIR-184 regulates apoptosis of endometrial epithelial cells in dairy goats via STC2-IGF1[D]. Thesis for M.S., Northwest Agriculture and Forestry University, Supervisor: Cao B Y, pp. 43-47) [2] 罗春海. 2011. 奶牛胎衣不下机制的初步研究[D]. 硕士学位论文, 黑龙江八一农垦大学, 导师: 付世新, pp. 19-20. (Luo C H.2011. Research on mechanisms of cow retained fetal membranes[D]. Thesis for M.S., Heilongjiang Bayi Agricultural University, Supervisor: Fu S X, pp. 19-20.) [3] 刘瑶, 张雷, 郑程远, 等. 2017. 胎衣不下奶牛母体胎盘差异表达bta-miR-31分析及验证[J]. 黑龙江八一农垦大学学报, 29(1): 38-41. (Liu Y,Zhang L,Zheng C Y,et al.2017. Analysis and verification of the differentially expressed bta-miR-31 of cow with retained fetal membranes[J]. Journal of Heilongjiang Bayi Agricultural University, 29(1): 38-41.) [4] 林宏甲, 郑程远, 邹晓, 等. 2018. 胎衣不下奶牛母体胎盘黏着斑激酶异常表达分析及验证[J]. 中国生物制品学杂志, 31(07): 728-731. (Lin H J, Zheng C Y, Zou X, et al.2018. Analysis and validation of differentially expressed focal adhesion kinase inplacenta tissue of cattle with retained fetal membranes[J]. Chinese Journal of Biologicals, 31(07): 728-731.) [5] 李春艳, 段定然, 潘应仙. 2015. 奶牛乳房炎病因及防治技术探讨[J]. 中国动物保健, 17(04): 32-33. (Li C Y, Duan D R, Pan Y X.2015. Discussion on the etiology and prevention techniques of dairy cow mastitis[J]. China Animal Health, 17(04): 32-33.) [6] 李建平, 吴素芳, 李健宇, 等. 2021. miRNA-370及其靶基因Wnt3a和KITLG在白色和棕色绒山羊皮肤中的表达与定位[J]. 中国兽医学报, 41(10): 2038-2043. (Li J P, Wu S F, et al.Li J Y.2021. Expression and localization of miRNA-370 and its target genes Wnt3a and KITLG in white and brown Cashmere goat skin[J]. Chinese Journal of Veterinary Science, 41(10): 2038-2043.) [7] 聂甜甜, 郑程远, 邹晓, 等. 2015. 胎衣不下奶牛胎盘组织差异表达蛋白的筛选及鉴定[J]. 中国生物制品学杂志, 28(01): 54-57. (Nie T T, Zheng C Y, Zou X, et al.2015. Screening and identification of differential expression proteins in placentatissue of cows with retained fetal membranes[J]. Chinese Journal of Biologicals, 28(01): 54-57.) [8] 田训. 2018. ALDH5A1对卵巢癌细胞的生物学影响及与卵巢癌预后关系的研究[D]. 博士学位论文, 华中科技大学, 导师: 马丁, pp. 3-5. (Tian X.2018. Effects of ALDHSA1 on ovarian cancer cells and therelationship between ALDHSA1 and the prognosis ofpatients with ovarian serous carcinomas[D]. Thesis for Ph.D., Huazhong University of Science and Technology, Supervisor: Ma D, pp. 3-5.) [9] 邢菲菲. 2022. 高NEFA对奶牛子宫内膜上皮细胞ECM降解关键因子的影响[D]. 硕士学位论文, 黑龙江八一农垦大学, 导师: 付世新, pp. 3-4. (Xing F F.2022. Effect of high concentration NEFA on key factors of ECM degradation in endometrial epithelial cells of dairy cows[D].Thesis for M.S., Heilongjiang Bayi Agricultural University, Supervisor: Fu S X, pp. 3-4.) [10] 朱云菲, 贾聚晨, 赵天夺, 等. 2023. miR-182对牛乳腺上皮细胞中乳糖合成的影响[J]. 中国乳品工业, 51(01): 32-35; 46. (Zhu Y F, Jia J C, Zhao T D, et al.2023. Regulation of miR-182 on lactose synthesis in dairy cow mammary epithelial cells[J]. China Dairy Industry, 51(01): 32-35; 46.) [11] 郑程远. 2018. miRNA-185调控VEGFA信号通路影响奶牛胎衣不下的分子机制[D]. 硕士学位论文, 黑龙江八一农垦大学, 导师: 付世新, pp. 56-57. (Zheng C Y.2018. miRNA-185 regulates the VEGFA signaling pathway in dairy cows withretained fetal membranes[D]. Thesis for M.S., Heilongjiang Bayi Agricultural University, Supervisor: Fu S X, pp. 56-57.) [12] 周帮会, 王凤霞. 2008. 奶牛胎衣不下发病机理研究进展[J].动物医学进展, 29(6): 83-86. (Zhou B H, Wang F X.2008. Advance in pathogenesis of placental retention in dairy cows[J]. Progress in Veterinary Medicine, 29(6): 83-86.) [13] 张力懿, 李鑫, 许晴, 等. 2023. miR-23b-3p通过靶向PDE4B基因调控山羊肌内前体脂肪细胞的分化[J]. 生物工程学报, 39(12): 4887-4900. (Zhang L Y, Li X, Xu Q, et al.2023. miR-23b-3p regulates the differentiation of goat intramuscular preadipocytesby targeting the PDE4B gene[J]. Chinese Journal of Biotechnology, 39(12): 4887-4900.) [14] 赵桐, 田训, 曹晨. 2023. ALDH5A1在卵巢癌中的表达及其对细胞侵袭特性和预后的影响[J]. 肿瘤防治研究, 50(02): 163-169. (Zhao T, Tian X, Cao C.2023. ALDH5A1 downregulation promotes tumor metastasis and contributes to poor prognosis in ovarian cancer[J]. Cancer Research on Prevention and Treatment, 50(02): 163-169. [15] 赵海, 卢俊杰, 马婧, 等. 2013.γ-氨基丁酸(GABA)通过调节细胞增殖参与小鼠胎盘的形成[J]. 生殖与避孕, 33(11): 719-72. (Zhao H, Lu J J, Ma J, et al.2013. γ-amino butyric acid (GABA) is involved in the mouse placentation by regulating the cell proliferation[J]. Reproduction & Contraception, 33(11): 719-72.) [16] Ameres S L, Zamore P D.2013. Diversifying microRNA sequence and function[J]. Nature Reviews Molecular Cell Biology, 14(8): 475-488 [17] Attupuram N M, Kumaresan A, Narayanan K, et al.2016. Cellular and molecular mechanisms involved in placental separation in the bovine: A review[J]. Molecular Reproduction and Development, 83: 287-297. [18] Beagley J C, Whitman K J, Baptiste K E, et al.2010. Physiology and treatment of retained fetal membranes in cattle[J]. Journal of Veterinary Internal Medicine, 24: 261-268. [19] Chen L, Zongs H L, Qi W, et al.2022. miRNA-150_R-1 mediates the HIF-1/ErbB signaling pathway to regulate the adhesion of endometrial epithelial cells in cows experiencing retained placenta[J]. Frontiers in Veterinary Science, 9: 9-21. [20] Gohary K, LeBlanc S J.2018. Cost of retained fetal membranes for dairy herds in the United States[J]. Journal of the American Veterinary Medical Association, 252: 1485-1489. [21] Hedblom E, Kirkness E F.1997. A novel class of GABAA receptor subunit in tissues of the reproductive system[J]. Journal of Biological Chemistry, 272(24): 15346-15350. [22] Haeger J D, Hambruch N, Pfarrer C.2016. The bovine placenta in vivo and in vitro[J]. Theriogenology, 86: 306-312. [23] Jaszczuk I, Koczkodaj D, Kondracka A, et al.2022. The role of miRNA-210 in pre-eclampsia development[J]. Annals of Medicine, 54: 1350-1356. [24] Lapehn S, Paquette A G.2022. The placental epigenome as a molecular link between prenatal exposures and fetal health outcomes through the DOHaD hypothesis[J]. Current Environmental Health Reports, 9: 490-501. [25] Luo W,Liu Z,Tan D,et al.2013. Gamma-amino butyric acid and the A type receptor suppress decidualization of mouse uterine stromalcells by down-regulating cyclin D3[J]. Molecular Reproduction and Development, 80(1): 59-69. [26] Lee E J, Baek M, Gusev Y, et al.2008. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors[J]. RNA, 14(1): 35-42. [27] Lim L P, Lau N C, Garrett-Engele P,et al.2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature, 433(7027): 769-773. [28] Maligianni I, Yapijakis C, Nousia K,et al.2022. Exosomes and exosomal non-coding RNAs throughout human gestation[J]. Experimental and Therapeutic Medicine, 24: 582. [29] Palma V S E, Sharbati S, Einspanier R.2015. Dentification of miRNAs in bovine endometrium through RNAseq and prediction of regulated pathways[J]. Reproduction in Domestic Animal, 50(5): 800-806. [30] Quezada M, Henríquez S, Vargas M, et al.2006. Proenkephalin A and the gamma -aminobutyric acid A receptor pi subunit: Expression, localization,and dynamic changes in human secretory endometrium[J]. Fertil Steril, 86(6): 1750-1757. [31] Sadeghi H, Taylor H S.2010. HOXA10 regulates endometrial GABAA {pi} receptor expression and membrane translocation[J]. American Journal of Physiology. Endocrinology and Metabolism, 298(4): E889-E893. [32] Stark A, Brennecke J, Bushati N,et al.2005. Animal micrornas confer robustness to gene expression and have a significant impact on 3'UTR evolution[J]. Cell, 123(6): 1133-1146. [33] Zheng C Y, Zou X, Lin H J, et al.2018. miRNA-185 regulates the VEGFA signaling pathway in dairy cows with retained fetal membranes[J]. Theriogenology, 110: 116-121.