Study on Thermotolerance Function and Regulatory Pathways of Heat Shock Transcription Factor ZmHsf06 in Maize (Zea mays)
LI Ran1,2,*, MA Zhen-Yu2,*, ZHANG Shi-Chang3, LI Guo-Liang2, MENG Xiang-Zhao2, DUAN Shuo-Nan2, LIU Zi-Hui2, LYU Ai-Zhi1, GUO Xiu-Lin2, ZHANG Hua-Ning2,**
1 College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, China; 2 Institute of Biotechnology and Food Science/Hebei Key Laboratory of Plant Genetic Engineering, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; 3 Wheat Engineering Research Center of Hebei Province, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
Abstract:Heat frequently affects yield and quality in different growth stages of maize (Zea mays). Heat shock transcription factor (Hsf) plays important roles in improving plant heat tolerance through regulating the expression of thermotolerance-related and activating multiple downstream pathways. Based on previous studies on characteristics and thermotolerance function of maize A1 subclass ZmHsf06, this study investigated its function and molecular mechanism in regulating thermotolerance through transformation in maize and chromatin immunoprecipitation-seq (ChIP-seq), and verified the protein interaction and transcriptional activation activity further. The results showed that ZmHsf06 had transcriptional activation activity and could interact with itself. Compared with the wild type, the thermotolerance of maize lines overexpressing ZmHsf06 were significantly improved. Analyzing the downstream target genes and high enrichment pathways of ZmHsf06 by ChIP-seq, a total of 2 218 differentially enriched genes were found under heat stress, including 1 169 genes up-regulated by ZmHsf06 specially, which were mainly enriched in electron carrier activity, photosynthesis, endoplasmic reticulum protein processing and heat shock response. The ZmHsf06 binding motif had heat shock elements (HSE), the binding elements of other transcription factors such as C2C2, TEAD and MADS and some unknown elements. Electrophoretic mobility shift assay (EMSA) showed that ZmHsf06 could bind to the heat shock elements located in the promoters of 3 target genes (Zm00001d000260, Zm00001d000272 and Zm00001d033987). These results will provide evidences for furthering the study of thermotolerance function and regulation mechanism of maize Hsf family.
[1] 宫本贺. 2014. 百合热激转录因子L1HSFA1及其下游热激蛋白L1HSP70响应热胁迫的机制解析[D]. 博士学位论文, 中国农业大学. 导师: 义鸣放, pp. 42-50. (Gong B H.2014. Mechanism analysis of response to heat stress of LlHsfAl andits downstream LIHsp70 from lily (Lilium longiflorum)[D]. Thesis for ph.D., China Agricultural University, Supervisor: Yi M F, pp. 42-50.) [2] 霍治国, 张海燕, 李春晖, 等. 2023. 中国玉米高温热害研究进展[J]. 应用气象学报, 34(1): 14. (Huo Z G, Zhang H Y, Li C H, et al.Research progress of high temperature heat damage in China[J]. The Applied Meteorology, 34(1): 14.) [3] 焦淑珍, 姚文孔, 张宁波, 等. 2020. 园艺植物热激转录因子研究进展[J]. 果树学报, 37(3): 419-430. (Jiao S Z, Yao W K, Zhang N B, et al.2020. Research progress of heat stress transcription factors (Hsfs) in horticultural plants[J]. Journal of Fruit Science, 37(3): 419-430.) [4] 李慧聪, 李国良, 郭秀林. 2015. 玉米热激转录因子基因ZmHsf06的克隆、表达和定位分析[J]. 农业生物技术学报, 23(1): 41-51. (Li H C, Li G L, Guo X L.2015. Cloning, expression characteristics and subcellular location of heat shock transcription factor gene ZmHsf06 in Zea mays[J]. Journal of Agricultural Biotechnology, 23(1): 41-51.) [5] 李丽. 2018. 水稻热激转录因子OsHsf18调控植物抗生物胁迫与非生物胁迫的功能机制研究[D]. 硕士学位论文, 湖南农业大学, 导师: 李魏, pp. 39-42. (Li L.2018. The functional mechanism of rice heat shock transcription factor OsHsf18 on regulating plant resistance against biotic and abiotic stresses[D]. Thesis for ph.D., Hunan Agricultural University, Supervisor: Li W, pp. 39-42.) [6] 刘然, 孟祥照, 苑赛男, 等. 2022. 小麦热激转录因子TaHsfA1亚家族基因的生物学特性及耐热性分析[J]. 农业生物技术学报, 30(1): 1-14. (Liu R, Meng X Z, Yuan S N, et al.2022. Biological characteristics and thermotolerance analysis of heat shock transcription factor TaHsfA1 subfamily genes in wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 30(1): 1-14.) [7] 王丽君, 孟庆锋, 黄收兵, 等. 2017. 黄淮海夏玉米季干旱和极端高温并发频率增加[C]//, 第十五届全国玉米栽培学术研讨会会议论文集, 第十五届全国玉米栽培学术研讨会, 5(1): 206. (Wang L J, Meng Q F, Huang S B, et al.2017. The frequency of drought and extreme high temperature increased in Huang-Huai-Hai summer corn season[C]//, The 15th National Corn Cultivation Proceedings of the proceedings the crop Science society of China, 5(1): 206.) [8] 颜梦雨. 2019. 油菜素内酯和HsfA1a调控番茄花粉发育和高温抗性的机制研究[D]. 博士学位论文, 浙江大学. 导师: 喻景权, pp. 75-78. (Yan M Y.2019. The role of brassinosteroid and HsfAla in the regulation of pollen development and heat tolerance in tomato[D]. Thesis for ph.D., Zhejiang University, Supervisor: Yu J Q, pp. 75-78.) [9] 苑赛男, 胡栋, 刘畅, 等. 2020. 小麦热激转录因子基因TaHsfA2-12的特性及耐热性调控功能[J]. 农业生物技术学报, 28(7): 1141-1155. (Yuan S N, Hu D, Liu C, et al.2020. Characteristics and thermotolerance regulating role of heat shock transcription factor gene TaHsfA2-12 in wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 28(7): 1141-1155.) [10] Albihlal W S, Gerber A P.2018. Unconventional RNA-binding proteins: An uncharted zone in RNA biology[J]. FEBS Letters, 592(17): 2917-2931. [11] Barna J, Csermely P, Vellai T.2018. Roles of heat shock factor 1 beyond the heat shock response[J]. Cellular and Molecular Life Sciences, 75(16): 2897-2916. [12] Chen J H, Chen S T, He N Y, et al.2020. Nuclear-encoded synthesis of the D1 subunit of photosystem Ⅱ increases photosynthetic efficiency and crop yield[J]. Nature Plants, 6(5): 570-580. [13] Chen S T, He N Y, Chen J H, et al.2017. Identification of core subunits of photosystemⅡas action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 89(6): 1106-1118. [14] Cortijo S, Charoensawan V, Brestovitsky A, et al.2017. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and Hsf1 transcription factors in Arabidopsis[J]. Molecular Plant, 10(10): 1258-1273. [15] Ding Y, Shi Y, Yang S.2020. Molecular regulation of plant responses to environmental temperatures[J].Molecular Plant, 13(4): 544-564. [16] Duan S, Liu B, Zhang Y, et al.2019. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.[J]. BMC Genomics, 20(1): 257. [17] Feng N, Feng H, Wang S, et al.2021. Structures of heat shock factor trimers bound to DNA[J]. Science, 24(9): 102951. [18] Guo M, Liu J H, Ma X, et al.2016. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 9(7): 114. [19] Hayes S, Schachtschabel J, Mishkind M, et al.2020. Hot topic: Thermosensing in plants[J]. Plant, Cell & Environment, 44(7): 2018-2033. [20] Huang Y, An J, Sircar S, et al.2023. HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions[J]. Nature Communications, 14(1): 469. [21] Jin G H, Gho H J, Jung K H.2012. A systematic view of rice heat shock transcription factorfamily using phylogenomic analysis[J]. Journal of Plant Physiology, 170(3): 321-329. [22] Kostaki K I, Coupel-Ledru A, Bonnell V C, et al.2020. Guard cells integrate light and temperature signals to control stomatal aperture[J]. Plant Physiology, 182(3): 1404-1419. [23] Li B, Gao Z, Liu X, et al.2019a. Transcriptional profiling reveals a time-of-day-specific role of REVEILLE4/8 in regulating the first wave of heat shock-induced gene expression in Arabidopsis[J]. The Plant Cell, 31(10): 2353-2369. [24] Li G L, Zhang Y Y, Zhang H N, et al.2019b. Characteristics and regulating role in thermotolerance of the heat shock transcription factor ZmHsf12 from Zea mays L.[J]. Journal of Plant Biology, 62(5): 329-341. [25] Li H C, Zhang H N, Li G L, et al.2015. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis[J]. Functional Plant Biology, 42(11): 1080-1091. [26] Li S, Liu X, Zhou X, et al.2019c. Improving zinc and iron accumulation in maize grains using the zinc and iron transporter ZmZIP5[J]. Plant and Cell Physiology, 60(9): 2077-2085. [27] Liu R, Xu Y H, Jiang S C, et al.2013. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function[J]. Journal of Experimental Botany, 64(18): 5443-5456. [28] Maruyama K, Ogata T, Kanamori N, et al.2017. Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice and maize[J]. The Plant Journal: for Cell and Molecular Biology, 89(4): 671-680. [29] Nover L, Bharti K, Döring P, et al.2001. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need[J]. Cell Stress Chaperones, 6(3): 177-189. [30] Qiu F, Zheng Y, Lin Y, et al.2023. Integrated ATAC-seq and RNA-seq data analysis to reveal OsbZIP14 function in rice in response to heat stress[J]. International Journal of Molecular Sciences, 24(6): 5619. [31] Sánchez B, Rasmussen A, Porter J R.2014. Temperatures and the growth and development of maize and rice: A review[J]. Global Change Biology, 20(2): 408-417. [32] Sandhu J, Irvin L, Liu K, et al.2021. Endoplasmic reticulum stress pathway mediates the early heat stress response of developing rice seeds[J]. Plant, Cell & Environment, 44(8): 2604-2624. [33] Scharf K D, Berberich T, Ebersberger I, et al.2012. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution[J]. Biochimica et Biophysica Acta, 1819(2): 104-119. [34] Wang H R, Feng M, Jiang Y J, et al.2023. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat[J]. The Plant Cell, 35(10): 3889-3910. [35] Xi Y, Ling Q, Zhou Y, et al.2022. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 13: 986628. [36] Xie D L, Huang H M, Zhou C Y, et al.2022. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity, protein repair, and degradation in Solanum lycopersicum L.[J]. Horticulture Research, 9: uhac163. [37] Xue G P, Drenth J, Mcintyre C L.2015. TaHsfA6 is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets[J]. Journal of Experimental Botany, 66(3): 1025-1039. [38] Yang X, Zhu W, Zhang H, et al.2016. Heat shock factors in tomatoes: Genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress[J]. PeerJ, 4: e1961. [39] Zhang H N, Li G L, Fu C, et al.2020. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize[J]. Scientific Reports, 10(1): 8073. [40] Zhang M, Zhao A, Guo C, et al.2021. A combined modelling and experimental study of heat shock factor SUMO ylation in response to heat shock[J]. Journal of Theoretical Biology, 530: 110877. [41] Zhou Y, Xu F, Shao Y, et al.2022. Regulatory mechanisms of heat stress response and the rmomorphogenesis in plants[J]. Plants (Basel), 11(24): 3410.