Effects of Paenibacillus terrae NK3-4 on Gene Expression in Fusarium fujikuroi
LIU Wen-Zhi1, WU Xin-Yu1, DU Jia-Peng1, PENG Zhi-Hong1, GONG Sha-Sha1, YU Wen-Qing1,2,*, LI Peng2,*
1 College of Life Science, Shangrao Normal University, Shangrao 334001, China; 2 Institute of Comprehensive Utilization of Agricultural and Livestock Products, Heilongjiang Academy of Agricultural Reclamation Sciences, Haerbin 150038, China
Abstract:Paenibacillus terrae NK3-4 strain is found to be antagonistic to plant pathogens. However, the response mechanism of NK3-4 interaction with the pathogen remains unclear. In this study, the inhibitory effect of NK3-4 on rice (Oryza sativa) bakanae disease pathogenic Fusarium fujikuroi was measured, and a transcriptome sequencing analysis for the NK3-4 inhibited F. fujikuroi was taken. The results showed that NK3-4 inhibited the growth, pigment synthesis and conidia formation of F. fujikuroi, and damaged the mycelia. Among the 2 291 differential expressed genes in F. fujikuri induced by NK3-4, the number of down-regulated genes was 2.44 times of up-regulated genes. And the down-regulated genes were mainly enriched in nucleus (GO:0005634), protein-containing complex (GO:0032991), intracellular non-membrane-bound organelles (GO:0043232) and other functional groups. Among the differential expressed genes, the number of down-regulated expressed genes related to pathogenesis (GO:0009405), toxin biosynthetic process (GO:0009403), aflatoxin biosynthetic process (GO:0045122), reproduction (GO:0000003 ) and other relative functions were more than that of the up-regulated genes. Meanwhile, of the differential expressed genes which involved in cell wall chitin biosynthetic process (GO:00060382), asexual reproduction (GO:0019954), conidia formation (GO:0048315), conidia development (GO:0061794), pigment biosynthetic process (GO:0046148) and other relative functions were all down-regulated expressed. The result of reverse transcription fluorescence quantitative PCR detection was consistent with transcriptome sequencing result (Pearson correlation index 0.90), indicating NK3-4 down-regulated the expression levels of genes in F. fujikuroi. Synthetic analysis showed that NK3-4 may inhibit F. fujikuroi by down-regulating the expression of genes, which related to growth and reproduction, pigment synthesis and spore production, and may reduce its virulence by inhibiting the biosynthesis of toxin in F. fujikuroi. The results provide a basis for further elucidating the molecular mechanism of NK3-4 interacting with F. fujikuroi.
[1] 陈宏州, 周晨, 庄义庆, 等. 2022. 江苏省水稻恶苗病菌种群鉴定及抗药性检测[J]. 植物保护, 48(2): 48-62. (Chen H Z, Zhou C, Zhuang Y Q, et al.2022. Population identification and resistance detection of the pathogen causing rice bakanae disease in Jiangsu province[J]. Plant Protection, 48(2): 48-62.) [2] 董爱菊, 邱慧珍, 魏茹云, 等. 2021. 类芽孢杆菌QHZ11对马铃薯黑痣病的生防效果[J]. 微生物学通报, 48(11): 4087-4099. (Dong A J, Qiu H Z, Wei R Y,et al.2021. The biocontrol effect of Paenibacillus jamilae QHZ11 on potato black scurf[J]. Microbiology China, 48(11): 4087-4099.) [3] 华菊玲, 李湘民, 罗任华. 2004. 拮抗细菌B-77的种类鉴定及对水稻恶苗病的防治效果[J]. 江西农业学报, 016(3): 62-64. (Hua J L, Li X M, Luo R H.2004. Identification of antagonistic bacterial strain B-77 and its control effect against rice bakanae[J]. Acta Agriculturae Jiangxi, 16(3): 62-64.) [4] 李风顺, 乔俊卿, 张荣胜, 等. 2022. 防治水稻恶苗病拮抗细菌的筛选、鉴定和评价[J]. 江苏农业学报, 38(4): 907-914. (Li F S, Qiao J Q, Zhang R S, et al.2022. Screening, identification and evaluation of antagonistic bacteria for the control of rice bakanae disease[J]. Jiangsu Journal of Agricultural Sciences, 38(4): 907-914.) [5] 李舒清. 2013. 多粘类芽孢杆菌SQR-21中fus基因簇特性研究及基因组分析[D]. 南京农业大学, 博士学位论文, 导师: 沈标, pp. 29-32. (Li S Q.2013. The chrarcteristices of fus gene cluster and genome analysis of Paenibacillus ploymyxa SQR-21[D]. Thesis for Ph. D., Nanjing Agricultural University, Supervisor: Shen B, pp. 29-32.) [6] 李腾杰, 梁孙妍, 郭健衡, 等. 2022. 特基拉芽孢杆菌XK29挥发物2-甲基丁酸对甘薯长喙壳菌的抑制作用研究[J]. 微生物学报, 62(12): 5018-5028. (Li T J, Liang S Y, Guo J H, et al.2022. Inhibitory effects of volatile 2-methylbutyric acid produced by Bacillus tequilensis XK29 on Ceratocystis fimbriata[J]. Acta Microbiologica Sinica, 62(12): 5018-5028.) [7] 李玉洋. 2017. 水稻恶苗病生防拮抗菌—多粘类芽孢杆菌SH15的分离及抑菌活性研究[D]. 硕士学位论文, 山东农业大学, 导师: 孙中涛, pp. 26-30. (Li Y Y.2017. Isolation of biocontrol Paenibacillus polymyxa SH15 against Fusarium moniliforme in rice and study on antifungal activity[D]. Thesis for M. S., Shandong Agricultural University, Supervisor: Sun Z T, pp. 26-30 ) [8] 马佳, 李颖, 胡栋, 等. 2018. 芽胞杆菌生物防治作用机理与应用研究进展[J].中国生物防治学报, 34(4): 639-648. (Ma J, Li Y, Hu D, et al.2018. Progress on mechanism and applications of Bacillus as a biocontrol microbe[J]. Chinese Journal of Biological Control, 34(4): 639-648.) [9] 王撼宇, 孙晓仲, 雷志鹏, 等. 2021. 抗菌肽对于病原微生物的抗菌及耐药机制[J].中国酿造, 40(8): 8-13. (Wang H Y, Sun X Z, Lei Z P, et al.2021. Mechanism of antibacterial and drug resistance of antimicrobial peptides to pathogenic microorganisms[J]. China Brewing, 40(8): 8-13.) [10] 于文清, 胡广民, 田艳洪, 等. 2014. 土地类芽孢杆菌生物制剂及其在农业上的应用[P]. 中国, ZL210310097501.1. (Yu W Q, Hu G M, Tian Y H, et al. 2014. Paenibacillus terrae biological agent and application thereof in agriculture [P]. China, ZL210310097501.1.) [11] 张宇. 2017. 新型杀菌剂氰烯菌酯抑制亚洲镰孢菌(Fusarium asiaticum)单端孢霉烯族毒素合成的机制研究[D]. 博士学位论文, 南京农业大学, 导师: 陈长军, pp. 30-34. (Zhang Y.2017. The inhibition mechanism of trichothecene mycotoxins production by phenamacril in Fusarium asiaticum[D]. Thesis for Ph. D., Nanjing Agricultural University, Supervisor: Chen C J, pp. 30-34). [12] 赵渊. 2020. 水稻恶苗病生防菌筛选及防控相关技术研究[D]. 硕士学位论文, 广西大学, 导师: 黄世文, 黎起秦, pp. 27, 36-42. (Zhao Y.2020. Studies on screening of biocontrol bacteria and control technologies of rice bakanae disease[D]. Thesis for M. S., Guangxi University, Supervisor: Huang S W, Li Q Q, pp. 27, 36-42) [13] Adekoya O, Sylte I.2009. The thermolysin family (M4) of enzymes: Therapeutic and biotechnological potential[J]. Chemical Biology & Drug Design, 73(1): 7-16. [14] Aktuganov G, Melentjev A, Galimzianova N, et al.2008. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and β-1, 3-glucanase production[J]. Canadian Joural of Microbiology, 54(7): 57-587. [15] Amatulli M T, Spadaro D, Gullino M L, et al.2012. Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds[J]. European Journal of Plant Pathology, 134(2): 401-408. [16] Hong T Y, Meng M.2003. Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp. isolated from garden soil[J]. Applied Microbiology and Biotechnology, 61(5-6): 472-478. [17] Huang E, Yousef A E.2015. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa[J]. Microbiological Research, 181: 15-21. [18] Ji Z, Zeng Y, Liang Y, et al.2019. Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress[J]. BMC Genomics, 20(1): 91. [19] Kim A Y, Shahzad R, Kang S M, et al.2017. Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L. plants through defence hormones regulation[J]. Joural of Plant Interactions, 12(1): 244-253. [20] Kim J, Le K D, Yu N H, et al.2020. Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi[J]. Pesticide Biochemistry and Physiology, 163: 154-163. [21] Kim J F, Jeong H, Park S Y, et al.2010. Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681[J]. Joural of Bacteriology, 192(22): 6103-6104. [22] Lee Y S, Nguyen X H, Cho J Y, et al.2017. Isolation and antifungal activity of methyl 2, 3-dihydroxybenzoate from Paenibacillus elgii HOA73[J]. Microbial Pathogenesis, 106: 139-145. [23] Li J, Liu W, Luo L, et al.2015. Expression of Paenibacillus polymyxa, β-1,3-1,4-glucanase in Streptomyces lydicus, A01 improves its biocontrol effect against Botrytis cinerea[J]. Biological Control, 90(12): 141-147. [24] Mew T W, Gonzales P.2002. A Handbook of Rice Seed-borne Fungi[M]. Metro Manila, Philippines: International Rice Research Institute, pp. 31-34. [25] Nawaz M E N, Malik K, Hassan M N.2022. Rice-associated antagonistic bacteria suppress the Fusarium fujikoroi causing rice bakanae disease[J]. Biological Control, 67: 101-109. [26] Ochi A, Konishi H, Ando S, et al.2017. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma[J]. Plant Pathology, 66(1): 67-76. [27] Ohsato S, Ochiai-Fukuda T, Nishiuchi T, et al.2007. Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol[J]. Plant Cell Reports, 26(4): 531-538. [28] Park J E, Kim H R, Park S Y, et al.2017. Identification of the biosynthesis gene cluster for the novel lantibiotic paenilan from Paenibacillus polymyxa E681 and characterization of its product[J]. Joural of Applied Microbiology, 123(5): 1133-1147. [29] Park W S, Choi H W, Han S S, et al.2009. Control of bakanae disease of rice by seed soaking into the mixed solution of prochloraz and fludioxonil[J]. Research in Plant Disease, 15(2): 94-100. [30] Rawat K, Tripathi S B, Kaushik N, et al.2022. Management of bakanae disease of rice using biocontrol agents and insights into their biocontrol mechanisms[J]. Archives of microbiology, 204(7): 401. [31] Spence C A, Bais H P.2014. Global gene expression in rice blast pathogen Magnaporthe oryzae treated with a natural rice soil isolate[J]. Planta: An International Journal of Plant Biology, 239(1): 171-185. [32] Vater J, Herfort S, Doellinger J, et al.2018. Genome mining of lipopeptide biosynthesis of Paenibacillus polymyxa E681 in combination with mass spectrometry-discovery of the lipoheptapeptide paenilipoheptin[J]. ChemBioChem, 19(7): 744-753. [33] Wu X C, Nathoo S, Pang A S, et al.1990. Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis[J]. Journal of Biological Chemistry, 265(12): 6845-6850. [34] Yang Y R, Kim Y C, Lee S W, et al.2012. Involvement of an efflux transporter in prochloraz resistance of Fusarium fujikuroi CF245 causing rice bakanae disease[J]. Journal of the Korean Society for Applied Biological Chemistry, 55(4): 571-574. [35] Yu W Q, Zheng G P, Qiu D W, et al.2018. Draft genome sequence, disease-resistance genes, and phenotype of Paenibacillus terrae strain (NK3-4) with the potential to control plant diseases[J]. Genome, 61(10): 725-734. [36] Yu W Q, Zheng G P, Qiu D W, et al.2019. Paenibacillus terrae NK3-4: A potential biocontrol agent that produces β-1,3-glucanase[J]. Biological Control, 129(2): 92-101.