Abstract:Clubroot is one of the main diseases of cruciferous crops. Screening the clubroot resistant (CR) materials of turnip (Brassica rapa ssp. rapifera), clarifying the distribution of CR genes, and analyzing the disease-resistance mechanism in turnip can provide a theoretical and practical basis for the breeding of turnip CR varieties. In this study, the resistance of 25 turnip materials to clubroot was identified by inoculating Plasraodiophora brassicae at the artificial seedling stage, the resistance genes were detected by molecular markers, and the infection process of Plasraodiophora brassicae and pathological changes of root were observed by Phloxine-B staining and paraffin section techniques. As a results, 4 materials (immune and highly resistant), among which WJ-9, WJ-21, and WJ-22 exhibited immunity, while WJ-14 exhibited high resistance. In addition, WJ-10, WJ-13, and WJ-18 exhibit disease tolerance; and 18 susceptible (susceptible and highly susceptible) materials were identified. The total number of CR genes in the tested materials was in descending order: Crr3>CRb>Crr1a=CrrA5>CRc>Crr1>CRa. WJ-22 was the material with the most resistance genes, containing a total of 6 resistance genes. There were differences in the infection process and pathological changes of Plasmodiophora brassicae in resistant and susceptible turnip roots. Compared with the susceptible material, the root hairs were infected later, the infection amount was less, and the cortex was not infected in the resistant materials. The root cells of the susceptible material would swell after Plasmodiophora brassicae invade, and the structure would be disordered. Swollen cells squeezed and destroyed root canals. The cell structure of the disease-resistant material was completed. In this study, 4 turnip resources with resistance to clubroot were identified, the CR genes carried by them were clarified, and the infection process and tissue structure differences between resistant and susceptible materials were explored. It provides a scientific basis for cultivating varieties with durable resistance to clubroot.
[1] 陈丽潇, 王跃华, 刘鑫, 等. 2019. 抗根肿病大白菜小孢子培养及分子鉴定[J]. 江苏农业科学, 47(10): 141-143. (Chen L X, Wang Y H, Liu X, et al.2019. Microspores culture and molecular identification of Chinese cabbage with clubroot resistantce[J]. Jiangsu Agricultural Sciences, 47(10): 141-143.) [2] 顾爱星, 张翠芳, 曲延英, 等. 2011. 棉花组织结构与黄萎病抗性的关系[J]. 植物病理学报, 41(5):502-508. (Gu A X, Zhang C F, Qu Y Y, et al.2011. Relationship of tissue structure and resistance to Verticillium wilt in cotton[J]. Acta Phytopathologica Sinica, 41(5): 502-508.) [3] 郭向华. 2001. 甘蓝根肿病菌的生物学特性及致病研究[D]. 西南农业大学, (01): 35-47. (Guo X H. 2001. Biological characteristics and pathogenesis of Plasmodicphora brassicae[D]. Southwest University, (01): 35-47.) [4] 胡靖锋, 吴丽艳, 林良斌, 等. 2010. 用菌土接种法鉴定云南省主要十字花科作物对根肿病的抗性[J]. 中国蔬菜, (14): 71-74. (Hu J F, Wu L Y, Lin L B, et al. 2010. To identify clubroot resistance of cruciferae vegetables from Yunnan province by using soil bacteria inoculation method[J]. China Vegetables, (14): 71-74.) [5] 吉川宏昭, 王素. 1989. 日本十字花科作物的抗根肿病育种[J]. 中国蔬菜, (3): 55-56. (Ji C H Z, Wang S. 1989. Breeding for resistance to clubroot of Japanese cruciferous crops[J]. China Vegetables, (3): 55-56.) [6] 李荣华, 夏岩石, 刘顺枝, 等. 2009. 改进的CTAB提取植物DNA方法[J]. 实验室研究与探索, 28(9): 14-16. (Li R H, Xia Y S, Liu S Z, et al.2009. CTAB-improved method of DNA extraction in plant[J]. Research and Exploration in Laboratory, 28(9): 14-16.) [7] 李妍, 谢学文, 向文胜, 等. 2011. 白菜根肿病的接种方法[J]. 植物保护学报, 38(1): 95-96. (Li Y, Xie X W, Xiang W S, et al.2011. The inoculation methods of Chinese cabbage clubroot[J]. Journal of Plant Protection, 38(1): 95-96.) [8] 刘亚萍. 2021. 外源褪黑素对大白菜根肿病抗性的生理机制研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 惠麦侠, pp.7-8. (Liu Y P.2021. Physiological mechanism of exogenous melatonin inducing resistance to clubroot in Chinese cabbage[D]. Thesis for M.S., Northwest A&F University, Supervisor: Hui M X, pp.7-8.) [9] 马丹丹, 庞胜群, 丁云花, 等. 2016. 甘蓝类蔬菜根肿病抗性鉴定[J]. 石河子大学学报(自然科学版), 34(2):164-169. (Ma D D, Pang S Q, Ding Y H, et al.2016. Study on clubroot resistance of different Brassica crops[J]. Journal of Shihezi University (Natural Science), 34(2): 164-169.) [10] 彭琦, 张椿雨, 费维新, 等. 2019. 江苏省主栽油菜品种根肿病抗性鉴定及分子标记检测[J]. 江苏农业科学, 47(12): 149-151. (Peng Q, Zhang C Y, Fei W X, et al.2019. Identification and molecular marker detection of root swelling resistance of clubroot of main rape cultivars varieties in Jiangsu Province[J]. Jiangsu Agricultural Sciences, 47(12): 149-151.) [11] 芮婷婷, 高青云, 李晓菁, 等. 2022. 芸薹根肿菌单孢亚甲基蓝琼脂糖分离法及其对生理小种的鉴定[J]. 园艺学报, 49(6): 1290-1300. (Rui T T, Gao Q Y, Li X J, et al.2022. Methylene blue combined agarose assay for single-spore isolation of plasmodiophora brassicae and pathotype differentiation[J]. Acta Horticulturae Sinica, 49(6): 1290-1300.) [12] 苏子毅, 班洁静. 2017. 十字花科蔬菜根肿病菌侵染寄主组织学观察[J]. 湖北师范大学学报(自然科学版), 37(1): 40-44. (Su Z Y, Ban J J.2017. Histological observation on hosts infected by clubroot of cruciferous vegetables[J]. Journal of Hubei Normal University (Natural Science), 37(1): 40-44.) [13] 王芳展, 刘亚培, 张梅, 等. 2012. 十字花科作物根肿病的侵染生理与抗性遗传研究进展[J]. 中国油料作物学报, 34(2): 215-224. (Wang F Z, Liu Y P, Zhang M, et al.2012. Development of physiological, biochemical characteristics and resistant genetics during clubroot disease in crucifer crops[J]. Chinese Journal of Oil Crop Sciences, 34(2): 215-224.) [14] 王彤彤, 张淑江, 章时蕃, 等. 2012. 大白菜根肿病抗性基因的标记和定位[J]. 中国蔬菜, 1(14): 31-35. (Wang T T, Zhang S J, Zhang S F, et al.2012. Mapping of clubroot resistance gene in Chinese cabbage[J]. China Vegetables, 1(14): 31-35.) [15] 吴艺飞, 丁茁荑, 周晓波, 等. 2020. 菜薹根肿病显微观察及抗病性鉴定[J]. 中国农学通报, 36(17): 129-133. (Wu Y F, Ding Z Y, Zhou X B, et al.2020. Root swelling disease of Brassica campestris: Microscopic observation and disease resistance identification[J]. Chinese Agricultural Science Bulletin, 36(17): 129-133.) [16] 杨丽梅, 方智远, 张扬勇, 等. 2020. 中国结球甘蓝抗病抗逆遗传育种近年研究进展[J]. 园艺学报, 47(9): 1678-1688. (Yang L M, Fang Z Y, Zhang Y Y, et al.2020. Recent advances of disease and stress resistance breeding of cabbage in China[J]. Acta Horticulturae Sinica, 47(9): 1678-1688.) [17] 战宗祥. 2017. 甘蓝型油菜抗根肿病资源创新与PbBa8.1位点遗传转育[D]. 博士学位论文, 华中农业大学, 导师: 张椿雨, pp. 40-43. (Zhan Z X.2017. Clubroot resistant germplasm innovation and transferring of resistant locus PbBa8.1 from turnip into canola elite variety[D]. Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Zhang C Y, pp. 40-43.) [18] 张红, 张斌, 闻凤英, 等. 2017. 大白菜根肿病的遗传规律及抗病基因定位研究[J]. 华北农学报, 32(4): 60-66. (Zhang H, Zhang B, Wen F Y, et al.2017. Chinese cabbage root disease genetic law and positioning of resistance genes research[J]. Acta Agriculurae Boreali-Sinica, 32(4): 60-66.) [19] 张小丽, 刘玉梅, 方智远, 等. 2016. 青花菜及近缘种属种质资源抗根肿病鉴定[J]. 植物遗传资源学报, 17(6): 1106-1115. (Zhang X L, Liu Y M, Fang Z Y, et al.2016. Identification of germplasm resistant to Clubroot (Plasmodiophora brassicae Woronin) in Broccoli (Brassica oleracea L.var. italica Plenck) and its relatives[J]. Journal of Plant Genetic Resources, 17(6): 1106-1115.) [20] 张振海. 2014. 十字花科蔬菜对根肿病的抗感性及病菌侵染寄主的组织学观察[D]. 硕士学位论文, 华中农业大学, 导师: 侯明生, 蔡丽, pp. 49-54. (Zhang Z H.2014. Resistance of cruciferous vegetables to clubroot and the observation on host histology during pathogen infection[D]. Thesis for M.S., Huazhong Agricultural University, Supervisor: Hou M S, Cai L, pp. 49-54.) [21] 周娜, 陆景伟, 郑阳, 等. 2018. 十字花科蔬菜根肿病抗性遗传及抗病育种研究进展[J]. 蔬菜, (2): 19-23. (Zhou N, Lu J W, Zheng Y, et al. 2018. Research progress on the genetics of resistance and disease resistance breeding of cruciferous vegetable clubroot[J]. Vegetables, (2): 19-23.) [22] 朱焕焕. 2017. 大白菜根肿病研究进展[J]. 蔬菜, (7): 19-26. (Zhu H H. 2017. Research progress on clubroot of Chinese cabbage[J]. Vegetables, (7): 19-26.) [23] 朱红丽, 肖崇刚, 陈国康, 等. 2015. 基于根肿菌早期侵染量的白菜抗性分析[J]. 植物保护学报, 42(4): 510-516. (Zhu H L, Xiao C G, Chen G K, et al.2015. Resistance analysis of Chinese cabbages to Plasmodiophora brassicae based on early infection in roots[J]. Journal of Plant Protection, 42(4): 510-516.) [24] 朱明钊, 张淑江, 张慧, 等. 2018. 大白菜抗根肿病的抗源筛选和分子标记鉴定[J]. 中国蔬菜, (3): 40-45. (Zhu M Z, Zhang S H, Zhang H, et al. 2018. Anti-sources screening and molecular marker identification of Chinese cabbage against clubroot[J]. China Vegetables, (3): 40-45.) [25] Chen J, Jing J, Zhan Z, et al.2013. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa[J]. PLOS ONE, 8(12): e85307. [26] Diederichsen E, Frauen M, Linders E G A, et al.2009. Status and perspectives of clubroot resistance breeding in crucifer crops[J]. Journal of Plant Growth Regulation, 28(3): 265-281. [27] Feng J, Hwang S F, Strelkov S E.2013. Genetic transformation of the obligate parasite Plasmodiophora brassicae[J]. Acta Phytopathologica Sinica, 103(10): 1052-1057. [28] Hirai M, Harada T, Kubo N, et al.2004. A novel locus for clubroot resistance in Brassica rapa and its linkage markers[J]. Theoretical and Applied Genetics, 108(4): 639-643. [29] Hatakeyama K, Suwabe K, Tomita R N, et al.2013. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L[J]. PLOS ONE, 8(1): e54745. [30] Liégard B, Baillet V, Etcheverry M, et al.2019. Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis[J]. New Phytologist, 222(1): 468-479. [31] Luo H, Chen G, Liu C, et al.2014. An improved culture solution technique for Plasmodiophora brassicae infection and the dynamic infection in the root hair[J]. Australasian Plant Pathology, 43(1): 53-60. [32] Matsumoto E, Ueno H, Aruga D, et al.2012. Accumulation of three clubroot resistance genes through Marker-assisted selection in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. The Japanese Society for Horticultural Science, 81(2): 184-190. [33] Matsumoto E, Yasui C, Ohi M, et al.1998. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Euphytica, 104(2): 79-86. [34] Chu M G,Tao S,C K F, et al.2014. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae[J]. BMC Genomics, 15(1): 1-20. [35] Nguyen M L, Monakhos G F, Komakhin R A, et al.2018. The new clubroot resistance locus is located on chromosome A05 in Chinese cabbage (Brassica rapa L.)[J]. Russian Journal of Genetics, 54(3): 296-304. [36] Piao Z Y, Deng Y Q, Choi S R, et al.2004. SCAR and CAPS mapping of CRb , a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Theoretical and Applied Genetics, 108(8): 1458-1465. [37] Sakamoto K, Saito A, Hayashida N, et al.2008. Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. Theoretical and Applied Genetics, 117(5): 759-767. [38] Suwabe K, Tsukazaki H, Iketani H, et al.2003. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L.[J]. Theoretical and Applied Genetics, 107(6): 997-1002. [39] Tomita H, Shimizu M, Doullah M A, et al.2013. Accumulation of quantitative trait loci conferring broad-spectrum clubroot resistance in Brassica oleracea[J]. Molecular Breeding, 32(4): 889-900. [40] Ueno H, Matsumoto E, Aruga D, et al.2012. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa[J]. Plant Molecular Biology, 80(6): 621-629. [41] Xu X, Yong C, Li B, et al.2022. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens[J]. Horticulture Research, 9: uhac066. [42] Yu F, Zhang X, Peng G, et al.2017. Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa[J]. Scientific Reports, 7(1): 1-11. [43] Zhang T, Zhao Z, Zhang C Y, et al.2014. Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa[J]. Molecular Breeding, 34(3): 1173-1183.