Application Progress of Gene Editing in Agricultural Animals
MA Yu-Hao1, GAO Shuang2, DONG Xiang-Hui2, LI Rui2, DENG Xue-Mei1,*
1 Laboratory of Animal Genetic Resources and Molecular Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; 2 Inner Mongolia Grassland Jinfeng Animal Husbandry Co., Ltd., Chifeng 025350, China
Abstract:Gene editing is a technology that precisely modifies endogenous genes in living organisms. From its appearance to the application, it has greatly promoted the development of agricultural science. The development of gene editing technology is divided into three main stages: the zinc finger nuclease (ZFN) stage, the transcription activation-like effector nuclease (TALEN) stage, and the clustered regularly interspaced short palindromic repeats (CRISPR) stage. Gene editing technology has the characteristics of specifically recognizing target sequences and targeted modification of targeted genes. This technology is applied to the verification of the main genes of key traits of agricultural animals, and the breeding process of agricultural animals is accelerated through precise editing of known functional genes. This review will focus on gene editing and its application in agricultural animals, and provide references for research in animal breeding and related fields.
[1] 郭日红. 2017. Cas9技术介导兔和山羊MSTN与CLPG1基因编辑的研究[D]. 博士学位论文, 南京农业大学, 导师:王锋, pp. 153. (Guo R H.2017. Cas9 Technology mediates MSTN and CLPG1 gene editing in rabbits and goats [D]. Tesis for PhD, Nanjing Agricultural University, Supervisor: Wang F, pp. 153.) [2] 胡加祥. 2017.美国转基因食品标识制度的嬗变及对我国的启示[J]. 比较法研究, (05):158-169. (Hu J X. 2017. The evolution of the labeling system of genetically modified food in the United States and its enlightenment to my country [J]. Comparative Research, (05):158-169.) [3] 华文君, 毕延震, 刘西梅, 等. 2015. CRISPR/Cas9技术制备猪肌肉生长抑制素基因敲除细胞[J]. 基因组学与应用生物学, 34(05): 945-949. (Hua W J, Bi Y T, Liu X M, et al.2015. Preparation of porcine myostatin knockout cells by CRISPR / Cas9 technology[J]. Genomics and Applied Biology, 34(05): 945-949.) [4] 竭航. 2013. 马立克氏病毒对鸡淋巴器官Toll样受体通路基因表达量的影响[D]. 硕士学位论文, 四川农业大学, 导师:刘益平, 杨宁, pp. 64. (Jie H.2013. Effect of Marek's Virus on Toll-like receptor pathway gene expression in chicken lymph organs [D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Liu Y P, Yang N, pp. 64.) [5] 李娜. 2017. 我国转基因食品标识法律制度研究[D]. 硕士学位论文, 吉林大学, 导师:刘雪斌. pp. 43 (Li N. 2017. Research on legal system of genetically modified food labeling in China [D]. Thesis for M.S., Jilin University, Supervisor: Liu X B, pp.43.) [6] 刘杰, 高鹏飞, 崔文涛, 等. 2014. 利用锌指核酸酶(Zfn)技术介导敲除猪卵母细胞孤雌胚胎中肌肉生长抑制素基因(Mstn)的初步研究[J]. 农业生物技术学报, 22(04):464-469. (Liu J, Gao P F, Cui W T, et al.2014. Preliminary study on the knockout of myostatin gene (Mstn) in parthenogenetic embryos of pig oocytes using zinc finger nuclease (Zfn) technology[J]. Journal of Agricultural Biotechnology, 22(04): 464-469.) [7] 庞中兵. 2017. CRISPR/Cas9技术构建TLR3、TLR4基因敲除细胞系和鸡模型探索[D]. 硕士学位论文, 中国农业科学院, 导师: 孟庆文, pp. 50 (Pang Z H.2017. Exploring TLR3 and TLR4 knockout cell lines and chicken models with CRISPR / Cas9 technology [D]. Thesis for M.S.,Chinese Academy of Agricultural Sciences, Supervisor: Meng Q W, pp. 50.) [8] 秦虹. 2018. 牛奶掺假及检测方法研究现状[J]. 甘肃畜牧兽医, 48(11):25-28. (Qin H.2018. Research status of milk adulteration and detection methods[J]. Gansu Animal Science and Veterinary Medicine, 48(11): 25-28.) [9] 宋丽杰, 王丽, 王捷. 2015. CRISPR/Cas9:一种新型的基因组定点编辑技术[J]. 生命科学研究, 19(03):276-282. (Song L J, Wang L, Wang J.2015. CRISPR / Cas9: A novel genome-specific editing technique[J]. Life Science Research, 19(03): 276-282.) [10] 杨汉春. 2014. 猪繁殖与呼吸综合征防控中的问题与对策[J]. 北方牧业, (24):16-17. (Yang H C. 2014. Problems and countermeasures in prevention and control of porcine reproductive and respiratory syndrome [J]. Northern Animal Husbandry, (24): 16-17.) [11] Akcakaya P, Bobbin M L, Guo J A, et al.2018. In vivo CRISPR editing with no detectable genome-wide off-target mutations[J]. Nature, 561(7723): 416-419. [12] Beerli R R, Barbas C R.2002. Engineering polydactyl zinc-finger transcription factors[J]. Nature Biotechnology, 20(2):135-141. [13] Berthelsen M F, Riedel M, Vendelbo M H, et al.2019. The CRISPR-Cas9 minipig: A transgenic toolbox pig to produce specific genome editing in designated tissues[C]. Tumor Biology. American Association for Cancer Research, 79(13): 3706. [14] Calvert J G, Slade D E, Shields S L, et al.2007. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. Journal of Virology, 81(14):7371-7379. [15] Capecchi M R.1989. Altering the genome by homologous recombination[J]. Science, 244(4910): 1288-1292. [16] Carlson D F, Lancto C A, Zang B, et al.2016. Production of hornless dairy cattle from genome-edited cell lines[J]. Nature Biotechnology, 34(5): 479-481. [17] Choi K, Shim J, Ko N, et al.2020. No excessive mutations in transcription activator-like effector nuclease-mediated Alpha-1,3-Galactosyltransferase knockout Yucatan miniature pigs[J]. Asian-Australasian Journal of Animal Sciences, 33(2): 360-372. [18] Cyranoski D.2015. Super-Muscly pigs created by small genetic tweak[J]. Nature, 523(7558): 13-14. [19] Ding Y, Zhou S, Ding Q, et al.2020. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep[J]. Journal of Integrative Agriculture, 19(4): 1065-1073. [20] Emlen D J, Marangelo J, Ball B, et al.2005. Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae)[J]. Evolution, 59(5): 1060-1084. [21] English M A, Soenksen L R, Gayet R V, et al.2019. Programmable CRISPR-responsive smart materials[J]. Science, 365(6455): 780-785. [22] Fu Y, Rocha P P, Luo V M, et al.2016. CRISPR-dCas9 and sgRNA ccaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci[J]. Nature Communications, 7: 11707. [23] Gao X, Liang H, Hou F, et al.2015. Thymosin beta-4 induces mouse hair growth[J]. PLoS One, 10(6): e130040. [24] Gaudelli N M, Komor A C, Rees H A, et al.2018. Publisher correction: Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 559(7714): e8. [25] Guilinger J P, Thompson D B, Liu D R.2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature Biotechnology, 32(6): 577-582. [26] Ishino Y, Shinagawa H, Makino K, et al.1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. 169(12): 5429-5433. [27] Jinek M, Chylinski K, Fonfara I, et al.2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 337(6096): 816-821. [28] Katsuyama T, Akmammedov A, Seimiya M, et al.2013. An efficient strategy for TALEN-mediated genome engineering in Drosophila[J]. Nucleic Acids Research, 41(17): e163. [29] Kim D, Kim S, Kim S, et al.2016. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq[J]. Genome Research, 26(3): 406-415. [30] Komor A C, Kim Y B, Packer M S, et al.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 533(7603): 420-424. [31] Labuhn M, Adams F F, Ng M, et al.2018. Refined sgRNA efficacy prediction improves large-and small-scale CRISPR-Cas9 applications[J]. Nucleic Acids Research, 46(3): 1375-1385. [32] Lareau C A, Clement K, Hsu J Y, et al.2018. Response to "Unexpected mutations after CRISPR-Cas9 editing in vivo"[J]. Nature Methods, 15(4): 238-239. [33] Li R, Zeng W, Ma M, et al.2020. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted Pigs[J]. Transgenic Research, 29(1): 149-163. [34] Li X, Hao F, Hu X, et al.2019. Generation of Tbeta4 knock-in cashmere goat using CRISPR/Cas9[J]. International Journal of Biological Sciences, 15(8): 1743-1754. [35] Lipinski D, Nowak-Terpilowska A, Hryhorowicz M, et al.2019. Production of ZFN-mediated GGTA1 knock-out pigs by microinjection of gene constructs into pronuclei of zygotes[J]. Polish Journal of Veterinary Sciences, 22(1): 91-100. [36] Liu H, Liu C, Zhao Y, et al.2018. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts[J]. Journal of Integrative Agriculture, 17(2): 406-414. [37] Liu Q, Segal D J, Ghiara J B, et al.1997. Design of polydactyl Zinc-Finger proteins for unique addressing within complex genomes[J]. Proceedings of the National Academy of Sciences of the USA, 94(11): 5525-5530. [38] Luo X, He Y, Zhang C, et al.2019. Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited Rhesus Monkeys[J]. Nature Communications, 10(1): 5525. [39] Mak A N S, Bradley P, Cernadas R A, et al.2012. The crystal structure of TAL effector PthXo1 bound to its DNA target[J]. Science, 335(6069): 716-719. [40] Mussolino C, Cathomen T.2013. RNA guides genome engineering[J]. Nature Biotechnology, 31(3): 208. [41] Nottle M B, Salvaris E J, Fisicaro N, et al.2017. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9[J]. Scientific Reporets, 7(1): 8383. [42] Nutter L M J.2019. Researchers quantify Cas9-Caused off-target mutagenesis in mice[C]. ASHG Annual Meeting. American Society of Human Genetics, www.sciencedaily.com/releases/2019/10/191019154003.htm. [43] Paschon D E, Lussier S, Wangzor T, et al.2019. Diversifying the structure of zinc finger nucleases for high-precision genome editing[J]. Nature Communications, 10(1): 1-12. [44] Pattanayak V, Lin S, Guilinger J P, et al.2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nature Biotechnology, 31(9): 839-843. [45] Sakuma T, Ochiai H, Kaneko T, et al.2013. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity[J]. Scientific Reports, 3: 3379. [46] Schaefer K A, Wu W H, Colgan D F, et al.2017. Unexpected mutations after CRISPR-Cas9 editing in vivo[J]. Nature Methods, 14(6): 547-548. [47] Siu K H, Chen W.2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function[J]. Nature Chemical Biology, 15(3): 217-220. [48] Sonstegard T S, Carlson D, Lancto C A, et al.2016. Precision animal breeding as a sustainable, non-GMO solution for improving animal production and welfare[C]. ASAP Animal Production, Adelaide. 31: 316-317. [49] Su X, Wang S, Su G, et al.2018. Production of micro homologous-mediated site-specific integrated lacs gene cow using TALENs[J]. Theriogenology, 119: 282-288. [50] Tanihara F, Hirata M, Nguyen N T, et al.2019. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes[J]. Animal Biotechnology, 26: 1-8. [51] Tsai S Q, Zheng Z, Nguyen N T, et al.2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases[J]. Nature Biotechnology, 33(2): 187-197. [52] Wang M, Sun Z, Zou Z, et al.2018. Efficient targeted integration into the bovine Rosa26 locus using TALENs[J]. Scientific Reports, 8(1): 10385. [53] Whitworth K M, Lee K, Benne J A, et al.2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biology of Reproduction, 91(3): 78. [54] Wu H, Wang Y, Zhang Y, et al.2015. TALE nickase-mediated SP110 knock in endows cattle with increased resistance to Tuberculosis[J]. Proceedings of the National Academy of Sciences of the USA, 112(13): e1530-E1539. [55] Yang B, Wang J, Tang B, et al.2011. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle[J]. PLoS One, 6(3): e17593. [56] Yang H, Zhang J, Zhang X, et al.2018. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Research, 151: 63-70. [57] Young A E, Mansour T A, McNabb B R, et al.2020. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull[J]. Nature Biotechnology, 38(2): 225-232. [58] Yu S, Luo J, Song Z, et al.2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle[J]. Cell Research, 21(11): 1638-1640. [59] Yuan T, Zhong Y, Wang Y, et al.2019. Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system[J]. Lipids in Health and Disease, 18(1): 69. [60] Yunes M C, Teixeira D L, von Keyserlingk M, et al.2019. Is gene editing an acceptable alternative to castration in pigs?[J]. PLoS One, 14(6): e218176. [61] Zetsche B, Gootenberg J S, Abudayyeh O O, et al.2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 163(3): 759-771. [62] Zhang J, Liu J, Yang W, et al.2019. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats[J]. Theriogenology, 132: 1-11. [63] Zhang X, Li W, Liu C, et al.2017. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9[J]. Scientific Reports, 7(1): 8149. [64] Zou Z, Huang K, Wei Y, et al.2017. Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection[J]. Scientific Reports, 7(1): 1478.