Analysis of the Therapeutic Effect of Gallic Acid Against Ichthyophthiriasis in Coreius guichenoti and Its Liver Metabolome
HUANG Lei1,2, PENG Xian-Qi2, BU Xia-Lian2, ZHAO Yu1, LIU Yu-Long2, CHEN Jing2, NIU Chen2, ZHU Jian1, QU Huan-Tao1,*, YAO Jia-Yun1,2,*
1 Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes/Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China; 2 Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Fish Health and Nutrition of Zhejiang Province/Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
Abstract:The largemouth bronze gudgeon (Coreius guichenoti), a rare endemic fish species in the upper Yangtze River, faces critical survival challenges due to ichthyophthiriasis. In order to investigate the therapeutic efficacy of plant-derived gallic acid (GA) against Ichthyophthirius multifiliis infection and elucidate its molecular mechanisms, this study systematically evaluated the therapeutic efficacy, safety profile, and underlying mechanisms of action of GA through in vitro and in vivo antiparasitic assays, acute toxicity tests, and hepatic non-targeted metabolomics analysis. In vitro assays demonstrated that GA exhibited concentration-dependent antiparasitic effects on I. multifiliis. After 4 h of treatment with 50 mg/L GA, the mortality of trophonts and theronts reached 100.0%, while 20 mg/L GA resulted in 63.3% and 80.3% mortality, respectively. Microscopic observations revealed pathological alterations in parasites, including cell membrane disruption, cytoplasmic leakage, and mitotic arrest in the parasites following GA treatment. In vivo trials showed that 50 and 20 mg/L GA reduced fish mortality from 100% (control) to 2.3% and 20.0% within 48 h, respectively. Concurrently, parasite mortality reached 54.3% and 21.3%. Moreover, GA treatment alleviated clinical symptoms, including white spots, excessive mucus secretion, and respiratory distress. Acute toxicity tests determined that the safe concentration (SC) of GA for C. guichenoti was 64.6 mg/L, with 96 h half-lethal concentration (LC50) values of 245.8 mg/L. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis revealed that 50 mg/L GA significantly reshaped the hepatic metabolic network in I. multifiliis-infected fish: (1) downregulating arachidonic acid metabolism, VEGF signaling, and Th17 cell differentiation pathways to suppress pro-inflammatory mediators; (2) upregulating endogenous antioxidants (e.g., glutathione and taurine) while activating FoxO signaling and lysosomal pathways to enhance reactive oxygen species scavenging; (3) optimizing mitochondrial energy metabolism and membrane homeostasis by enriching pathways such as oxidative phosphorylation, glycerophospholipid metabolism, and the malate-aspartate shuttle. These findings demonstrated that 50 mg/L GA effectively controled ichthyophthiriasis via a synergistic mechanism involving anti-inflammatory regulation, antioxidant defense activation, and metabolic reprogramming, thereby restoring hepatic metabolic homeostasis. This study provides novel strategies and a candidate agent for the environmentally friendly control of ichthyophthiriasis in fish.
[1] 蔡龙, 李习龙, 蒋显仁. 2019. 没食子酸的生物学功能及在畜禽生产中的应用[J]. 动物营养学报, 31(1): 102-108. (Cai L, Li X L, Jiang X R, et al.2019. Biological functions of gallic acid and its application in livestock and poultry production[J]. Chinese Journal of Animal Nutrition, 31(01): 102-108.) [2] 陈志龙, 黄运茂, 王一冰, 等. 2022. 没食子酸的生物学特性及其在畜禽生产中的应用进展[J]. 饲料工业, 43(08): 59-64. (Chen Z L, Huang Y M, Wang Y B, et al.2022. Bio-characteristics of gallic acid and its application in livestock and poultry production[J]. Feed Industry, 43(08): 59-64.) [3] 戴瑜来, 王宇希, 许宝青, 等. 2023. 硫酸铜, 敌百虫, 聚维酮碘对吉富罗非鱼的急性毒性及组织病理学研究[J]. 南方水产科学, 19(06): 116-126. (Dai Y L, Wang Y X, Xu B Q, et al.2023. Study on acute toxicity and histopathology of copper sulfate, trichlorfon and povidone - iodine to GIFT tilapia (Oreochromis niloticus)[J]. South China Fisheries Science, 19(06): 116-126.) [4] 邓永强, 汪开毓, 黄小丽. 2005. 鱼类小瓜虫病的研究进展[J]. 大连水产学院学报, 20(02): 149-153. (Deng Y Q, Wang K Y, Huang X L.2005. The advanced research of ichthyophthiriasis in fish[J]. Journal of Dalian Fisheries University, 20(02): 149-153.) [5] 李肖玲, 崔岚, 祝德秋. 2004. 没食子酸生物学作用的研究进展[J]. 中国药师, 7(10): 767-769. (Li X L, Cui L, Zhu D Q.2004. Research progress on biological effects of gallic acid[J]. China Pharmacist, 7(10): 767-769.) [6] 卢军浩, 李兰兰, 权金强, 等. 2022. 小瓜虫对虹鳟组织病理变化及TLR信号通路基因表达影响[J]. 农业生物技术学报, 30(04): 739-750. (Lu J H, Li L L, Quan J Q, 2022. et al. Histopathological changes and gene expression dynamics of TLR signaling pathway in Oncorhynchus mykiss infected with Ichthyophthirius multifilii[J]. Journal of Agricultural Biotechnology, 30(04): 739-750.) [7] 孙裔雷, 王荻, 刘红柏. 2015. 中草药防治淡水鱼小瓜虫病的研究进展[J]. 生物技术通讯, 26(02): 301-304. (Sun Y L, Wang D, Liu H B.2015. Research advance on anti- ichthyophthiriasis of chinese herbal medicine on freshwater fish[J]. Letters in Biotechnology, 26(02): 301-304.) [8] 吴思雨, 梁赫, 刘秀, 等. 2023. 没食子酸对棉铃虫生长发育的影响及作用机理[J]. 植物保护, 49(01): 118-125. (Wu S Y, Liang H, Liu X, et al.2023. Effect and mechanism of gallic acid on growth and development of Helicoverpa armigera[J]. Plant Protection, 49(01): 118-125.) [9] 姚嘉赟, 徐洋, 袁雪梅, 等. 2016. 丁香酚的分离及其杀多子小瓜虫活性研究[J]. 水产科学, 35(06): 669-674. (Yao J Y, Xu Y, Yuan X M, et al.2016. Isolation of active compounds from Eugenia caryophy llata against Ichthyophthirius multifiliis in vitro[J]. Fisheries Science, 35(06): 669-674.) [10] Apte R S, Chen D S, Ferrara N.2019. VEGF in signaling and disease: Beyond discovery and development[J]. Cell, 176(6): 1248-1264. [11] Borges A, Ferreira C, Saavedra M J, et al.2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria[J]. Microbial Drug Resistance, 19(4): 256-265. [12] Bougarne N, Weyers B, Desmet S J, et al.2018. Molecular actions of PPARα in lipid metabolism and inflammation[J]. Endocrine Reviews, 39(5): 760-802. [13] Fu J, Zhao L, Yang J, et al.2023. An unconventional SNARE complex mediates exocytosis at the plasma membrane and vesicular fusion at the apical annuli in Toxoplasma gondii[J]. PLoS Pathogens, 19(3): e1011288. [14] Gao J, Hu J, Hu D, et al.2019. A role of gallic acid in oxidative damage diseases: A comprehensive review[J]. Natural Product Communications, 14(8): 1934578X19874174. [15] Garcia L O, Becker A G, Cunha M A, et al.2011. Effects of water pH and hardness on infection of silver catfish, Rhamdia quelen, fingerlings by Ichthyophthirius multifiliis[J]. Journal of the World Aquaculture Society, 42(3): 399-405. [16] Guo Z, Zeng C, Shen Y, et al.2024. Helper lipid-enhanced mRNA delivery for treating metabolic dysfunction-associated fatty liver disease[J]. Nano Letters, 24(22): 6743-6752. [17] Huang K, Hu G, Wang R, et al.2022. In vitro assessment of berberine against Ichthyophthirius multifiliis in goldfish[J]. Pathogens, 11(10): 1207. [18] Irinmwinuwa O, Benard G, Adolphus M, et al.2023. A critical review on LD50 of some medicinal plant[J]. European Journal Pharmaceutical and Medical Research, 10(9): 735-746. [19] Kim Y J.2007. Antimelanogenic and antioxidant properties of gallic acid[J]. Biological and Pharmaceutical Bulletin, 30(6): 1052-1055. [20] Krafczyk N, Klotz L O.2022. FOXO transcription factors in antioxidant defense[J]. IUBMB Life, 74(1): 53-61. [21] Li Y, Xie Z, Gao T, et al.2019. A holistic view of gallic acid - induced attenuation in colitis based on microbiome - metabolomics analysis[J]. Food & Function, 10(7): 4046-4061. [22] Liao C C, Chen S C, Huang H P, et al.2018. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS)[J]. Journal of Food and Drug Analysis, 26(2): 620-627. [23] Liu Y, Su L, Cao D, et al.2025. Comparative analysis of seabuckthorn and its significant component in enhancing fish mucosal immunity[J]. Aquaculture, 596: 741752. [24] Luo Y, Qi X, Zhang Z, et al.2024. Inactivation of malic enzyme 1 in endothelial cells alleviates pulmonary hypertension[J]. Circulation, 149(17): 1354-1371. [25] Punia A, Chauhan N S, Singh D, et al.2021. Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor[J]. Scientific Reports, 11(1): 531. [26] Ren Y, Yu G, Shi C, et al.2022. Majorbio Cloud: A one‐stop, comprehensive bioinformatic platform for multiomics analyses[J]. IMeta, 1(2): e12. [27] Shao M, Lu Y, Xiang H, et al.2022. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine[J]. Frontiers in Pharmacology, 13: 971561. [28] Shi X, Xiao C, Wang Y, et al.2013. Gallic acid intake induces alterations to systems metabolism in rats[J]. Journal of Proteome Research, 12(2): 991-1006. [29] Shimada K, Jong C J, Takahashi K, et al.2015. Role of ROS production and turnover in the antioxidant activity of taurine[J]. Advances in Experimental Medicine and Biology, 803(4):581-596. [30] Sun Y, Chen Q, Liu Y, et al.2025. Decanoylcarnitine improves liver mitochondrial dysfunction in Hepatitis B virus infection by enhancing fatty acid β-oxidation[J]. The Journal of Infectious Diseases, 2025: jiaf014. https://doi.org/10.1093/infdis/jiaf014 [31] Wahli T, Schmitt M, Meier W.1999. Evaluation of alternatives to malachite green oxalate as a therapeutant for ichthyophthiriosis in rainbow trout Oncorhynchus mykiss[J]. Journal of Applied Ichthyology, 9(3-4): 237-249. [32] Wang T, Fu X, Chen Q, et al.2019. Arachidonic acid metabolism and kidney inflammation[J]. International Journal of Molecular Sciences, 20(15): 3683. [33] Wang W, Mao J, Chen J, et al.2025. Metabolic differences and potential action mechanisms of core antioxidant substances of Gastrodia elata in Guizhou province, China by untargeted metabolomics and network pharmacology[J]. Food Bioscience, 65: 106143. [34] Xu Y, Tang G, Zhang C, et al.2021. Gallic acid and diabetes mellitus: Its association with oxidative stress[J]. Molecules, 26(23): 7115. [35] Yang K, Deng X, Jian S, et al.2022. Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome-metabolomics analysis[J]. Frontiers in Immunology, 12: 813890. [36] Yao J, Zhou Z, Li X, et al.2011. Antiparasitic efficacy of dihydrosanguinarine and dihydrochelerythrine from Macleaya microcarpa against Ichthyophthirius multifiliis in richadsin (Squaliobarbus curriculus)[J]. Veterinary Parasitology, 183(1-2): 8-13. [37] Zhang M, Zhang X, Pei J, et al.2023. Identification of phytochemical compounds of Fagopyrum dibotrys and their targets by metabolomics, network pharmacology and molecular docking studies[J]. Heliyon, 9(3): e14029. [38] Zhao J, Chen Y, Li L, et al.2024a. CYSLTR1 antagonist inhibits Th17 cell differentiation by regulating the NF-κB signaling for the treatment of psoriasis[J]. International Journal of Biological Sciences, 20(6): 2168-2186. [39] Zhao X, Zhang L, Wu N, et al.2024b. Gallic acid acts as an anti-inflammatory agent via PPARγ-mediated immunomodulation and antioxidation in fish gut-liver axis[J]. Aquaculture, 578: 740142.