Abstract:Rhododendron species have ornamental, economic and medicinal value, while most of the excellent varieties of Rhododendron cultivated at present have poor heat tolerance, and the increase in temperature will seriously affect the normal growth and development of Rhododendron. Heat stress transcription factors (HSFs) plays a key role in the regulation of plant heat shock response or heat tolerance. In this study, phytoene desaturase (RpPDS, OQ628048) and RpHSFC1a (OQ628046) genes of Rhododendron×pulchrum were cloned, and the virus induced gene silencing (VIGS) system was constructed with RpPDS as the reporter gene and Tobacco rattle virus (TRV) as the vector. The bioinformatics of the RpHSFC1a gene and its function in response to high temperature stress were analyzed. Using phenotypic observation, PCR and qPCR methods, TRV could infect and replicate and metastasize in the leaves of Rhododendron×pulchrum, and yellowing will occurred in leaves when the expression of RpPDS gene is inhibited, the result showed that TRV virus-mediated gene silencing system could be applied in Rhododendron×pulchrum. The CDS of the RpHSFC1a gene length totally 891 bp and encodes 296 amino acids, and RpHSFC1a contained HSF_DNA-bind superfamily conserved domain. RpHSFC1a was predicted to be a hydrophilic and transmembrane protein. Phylogenetic analysis showed that RpHSFC1a protein had the highest homology rate with HSFC1 of Diospyros lotus, with a homology of 75.8%. Under heat stress, RpHSFC1a gene was significantly up-expression, the chlorophyll parameters Fv/Fm, PIABS and ETo/RC in the leaves of the strain of RpHSFC1a gene silenced were significantly lower than those of the control group. The DIo/RC was significantly higher than that of the control group. It was shown that the low expression of RpHSFC1a gene could reduce the ability of Rhododendron×pulchrum to resist high temperature stress, and it is speculated that the RpHSFC1a gene participates in the regulatory mechanism of Rhododendron×pulchrum in response to high temperature stress. This study provides a theoretical reference for the study of heat tolerance, and genetic resources for improving the high temperature stress tolerance of Rhododendron.
[1] 陈霞连, 杨华侨, 黎佳欣, 等. 2017. 美容杜鹃RcHsfB3基因的克隆及表达分析[J]. 四川大学学报(自然科学版), 54(02): 405-410. (Chen X L, Yang H Q, Li J X, et al.2017. Cloning and expression analysis of RcHsfB3 from Rhododendron calophytum[J]. Journal of Sichuan University (Natural Science Edition), 54(02): 405-410.) [2] 耿兴敏, 杨秋玉, 郑福超, 等. 2016. 4种杜鹃幼苗高温胁迫下蛋白表达差异[J]. 分子植物育种, 14(06): 1574-1581. (Geng X M, Yang Q Y, Zheng F C, et al.2016. Differences in the protein expression of four Rhododendron species seedlings under high temperature stress[J]. Molecular Plant Breeding, 14(06): 1574-1581.) [3] 李辉. 2019. 杜鹃耐热资源评价及其生理机制研究[D]. 硕士学位论文, 扬州大学, 导师: 陈素梅, pp. 1. (Li H.2019. Study on evaluation of heat resistance resources and physiological mechanism of Rhododendron[D]. Thesis for M.S., Yangzhou University, Supervisor: Chen S M, pp. 1.) [4] 李鹏民, 高辉远, Strasser R J.2005. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 31(06): 559-566. (Li P M, Gao H Y, Strasser R J.2005. Application of the chlorophyll fluorescence induction dynamics in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 31(06): 559-566.) [5] 梁月秀, 郭志强, 冯凡, 等. 2021. 高粱Hsf基因家族鉴定及表达分析[J]. 山西农业大学学报(自然科学版), 41(02): 1-10. (Liang Y X, Guo Z Q, Feng F, et al.2021. Identification and expression analysis of Hsf gene family in Sorghum bicolor[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 41(2): 1-10.) [6] 刘倩倩, 马寿宾, 冯希环, 等. 2016. 嫁接对高温和低温胁迫下辣椒幼苗快速叶绿素荧光诱导动力学特性的影响[J]. 园艺学报, 43(05): 885-896. (Liu Q Q, Ma S B, Ma X H, et al.2016. Effects of grafting on the fast chlorophyll fluorescence induction dynamics of pepper seedlings under temperature stress[J]. Acta Horticulturae Sinica, 43(05): 885-896.) [7] 刘婉迪, 袁媛, 王威, 等. 2019. 热胁迫对杜鹃叶片叶绿素荧光特性的影响[J]. 江苏农业科学, 47(08): 144-148. (Liu W D, Yuan Y, Wang W, et al., 2019. Effects of thermal stress on chlorophyll fluorescence characteristics of Rhododendron leaves[J]. Jiangsu Agricultural Sciences, 47(08): 144-148.) [8] 任子蓓, 王俊玲, 史宝胜. 2015. 热胁迫对连翘离体叶圆片光系统Ⅱ活性的影响[J]. 林业科学, 51(04): 44-51. (Ren Z B, Wang J L, Shi B S.2015. Effects of heat stress on photosystemⅡ activity in leaves of Forsythia suspensa[J]. Scientia Silvae Sinicae, 51(04): 44-51.) [9] 苏楷淇, 陈雅琦, 杨惠敏. 2020. 杜鹃属植物与杜鹃灌丛群落的研究进展[J]. 亚热带热带植物学报, 28(5): 572-36. (Su K Q, Chen Y Y, Yang H M.2020. Advances in the Rhododendron and Rhododendron shrub communities[J]. Journal of Tropical and Subtropical Botany, 28(5): 572-36.) [10] 苏晓琼, 王美月, 束胜, 等. 2013. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响[J], 园艺学报, 40(12): 2409-2418. (Su X Q, Wang M Y, Shu S, et al.2013. Effects of exogenous Spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress[J], Acta Horticulturae Sinica, 40(12): 2409-2418.) [11] 汪宝根, 刘永华, 吴晓花, 等. 2009. 四季豆品种耐高温性和叶绿素荧光参数等的关系[J]. 浙江农业科学, 3: 461-462. (Wang B G, Liu Y H, Wu X H, et al.2009. Relationship between high temperature tolerance and chlorophyll fluorescence parameters of green bean cultivars[J]. Zhejiang Agricultural Sciences, 3: 461-462.) [12] 王浩琪, 秦坤蓉, 祝浩翔, 等. 2022. 高山杜鹃低山引种适应性及外源抗热剂对高温胁迫的影响[J]. 西南大学学报(自然科学版), 44(04): 36-44. (Wang H Q, Qin K R, Zhu H X, et al.2022. Effect of exogenous heat-resistant agent on heat resistance of Rhododendron under high temperature stress[J]. Journal of Southwest University (Natural Science Edition), 44(04): 36-44.) [13] 王立涵, 王翔, 李世斌, 等. 2019. 高温胁迫下外源物质对黄瓜幼苗叶绿素荧光和抗氧化酶活性的影响[J]. 安徽农学通报, 25(10): 20-22, 95. (Wang L H, Wang X, Li S B, et al.2019. Effects of exogenous substances on chlorophyll fluorescence parameters and antioxidant enzyme activities in leaves of cucumber seedlings under high temperature stress[J]. Anhui Agricultural Science Bulletin, 25(10): 20-22, 95.) [14] 吴福建, 李凤兰, 黄凤兰, 等. 2008. 杜鹃花研究进展[J]. 东北农业大学学报, 39(01): 139-44. (Wu F J, Li F L, Huang F L, et al.2008. Research progress on Rhododendron[J]. Journal of Northeast Agricultural University, 39(01): 139-44.) [15] 张家荣. 2017. 漳平市杜鹃花产业调查与VIGS技术体系初步构建[D]. 硕士学位论文, 福建农林大学, 导师: 陈清西, pp. 1. (Zhang J R.2017. The Zhangping city Rhododendron's industry survey and VIGS preliminary establishment[D]. Thesis for M.S., Fujian Agriculture and Forestry University, Supervisor: Chen Q X, pp. 1.) [16] Andrási A P S, Szabados L.2012. Diversity of plant heat shock factors: Regulation, interactions and functions[J]. Journal of Experimental Botany, 72(05): 1558-1575. [17] Ayako N Y, Ryota N, Hideki H, et al.2011. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the HSF signaling network in response to environmental stress[J]. Plant and Cell Physiology, 52(5): 933-945. [18] Bachan S, Dinesh-Kumar S P.2012. Tobacco rattle virus (TRV)-based virus-induced gene silencing[J]. Methods in Molecular Biology, 894: 83-92. [19] Baker N R, Rosenqvist E.2020. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities[J]. Journal of Experimental Botany, 55(403): 1607-1621. [20] Berry J A, Bjorkman O.2003. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 31(1): 491-543. [21] Charng Y Y, Liu H C, Liu N Y, et al.2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology, 143(1): 251-262. [22] Giorno F, Guerriero G, Baric S, et al.2012. Heat shock transcriptional factors in Malus domestica: Identification, classification and expression analysis[J]. BioMed Central, 13: 639. [23] Goltsev V, Zaharieva I, Chernev P, et al.2009. Delayed fluorescence in photosynthesis[J]. Photosynthesis Research, 101(2-3): 217-232. [24] Goltsev V, Zaharieva I, Chernev P, et al.2012. Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation[J]. Biochimica et Biophysica Acta, 1817(8): 1490-1498. [25] Guo M, Liu J H, Ma X, et al.2016. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 7(273): 114. [26] Li H C, Li G L, Liu Z H, et al.2014. Cloning, localization and expression analysis of ZmHsf-like gene in Zea mays[J]. Journal of Integrative Agriculture, 13(06): 1230-1238. [27] Merope T M, Martin P, Strasser R J.1999. Light and heat stress adaptation of the symbionts of temperate and coral reef foraminifers probed in hospite by the chlorophyll a fluorescence kinetics[J]. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 54(9-10): 671-680. [28] Mishra S K.2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerancein tomato[J]. Cold Spring Harbor Laboratory Press, 16(12): 1555-1567. [29] Nover L, Bharti K, Döring P, et al.2001. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?[J]. Cell Stress and Chaperones, 6(3): 177-189. [30] Ronde J A D, Cress W A, Krüger G H J, et al.2004. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis p5cr gene, during heat and drought stress[J]. Journal of Plant Physiology, 161(11): 1211-1224. [31] Schansker G, Kissimon J, Kovács L.2005a. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.)[J]. Journal of Plant Physiology, 162(2): 181-194. [32] Schansker G, Tóth S Z, Strasser R J.2005b. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the chl a fluorescence rise OJIP[J]. Biochimica et Biophysica Acta, 1706(3): 250-261. [33] Shen J S, Cheng H F, Li X Q, et al.2022. Beneficial effect of exogenously applied calcium chloride on the anatomy and fast chlorophyll fluorescence in Rhododendron pulchrum leaves following short-term heat stress treatment[J]. Agronomy, 12(12): 3226. [34] Shen J S, Lan L, Kan S L, et al.2023. A haplotype‐resolved genome for Rhododendron×pulchrum and the expression analysis of heat shock genes[J]. Journal of Systematics and Evolution, DOI: https://doi.org/10.1111/jse.13007 [35] Shen J S, Si W J, Wu Y T, et al.2021. Establishment and verification of an efficient virus-induced gene silencing system in Forsythia[J]. Horticultural Plant Journal, 7(1): 81-88. [36] Shen J S, Wu Y T, Jiang Z Y, et al.2019. Selection and validation of appropriate reference genes for gene expression studies in Forsythia[J]. Physiology and Molecular Biology of Plants, 26(1): 173-188. [37] Strasser R J.2004. Analysis of the Chlorophyll a Fluorescence Transient[M]. Springer. Chapter: Chlorophyll a Fluorescence, pp. 321-362. [38] Strauss A J, Krüger G H J, Strasser R J, et al.2006. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient o-j-i-p[J]. Environmental and Experimental Botany, 56(2): 147-157. [39] Szilvia Z T, Schansker G, Garab G, et al.2007. Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystemⅡ[J]. Biochimica Et Biophysica Acta, 1767(4): 295-305. [40] Toth S Z, Schansker G, Strasser R J.2005. In intact leaves, the maximum fluorescence level (Fm) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study[J]. Biochimica Et Biophysica Acta-Bioenergetics, 1708(2): 275-282. [41] Wahid A, Gelani S, Ashraf M, et al.2007. Heat tolerance in plants: An overview[J]. Environmental and Experimental Botany, 61(3): 199-223. [42] Wermelinger B, Baumgärtner J, Gutierrez, A P.1991. A demographic model of assimilation and allocation of carbon and nitrogen in grapevines[J]. Ecological Modelling, 53(1-2): 1-26. [43] Xu P, Zhang, Y, Kang L, et al.2006. Computational estimation and experiment al verification of off target silencing during posttranscriptional gene silencing in plants[J]. Plant Physiology, 142(2): 429-440. [44] Yamagishi N, Yoshikawa N.2011. Virus Induced Gene Silencing of Endogenous Genes and Promotion of Flowering in Soybean by Apple latent spherical virus based vectors[M]. Soybean Molecular Aspects of Breeding, pp, 43-56. [45] Yokotani N, Ichikawa T, Kondou Y, et al.2008. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta, 227(5): 957-967.