Research Progresses on the Regulation of Sucrose on Plant Branching
ZHOU Hui-Wen*, LUO Han-Min*, XIONG Fa-Qian, GAO Yi-Jing, LIU Jing, YANG Tai-Yi, YAN Hai-Feng**, QIU Li-Hang**
Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
Abstract:Shoot branching is an important agronomic trait of plant architecture because it substantially affects the yield and value of the plant. Branching characteristics are affected by many factors, and sucrose is the most popular research topics affecting the branching characteristics of plants. A certain number of studies have shown that sucrose not only serves as a carbon source to provide energy for the meristematic growth of plants, but also is an important signaling molecule. In this review, the main pathways through which sucrose promotes branching are summarized. Among them, strigolactone, auxin, and cytokinin are the most important hormones in the process of sucrose promoting branching, and transcription factors such as teosinte branched 1 (TB1) and branched 1 (BRC1) also play an important role. This paper provides a basis for the theory of plant branching and constructing a reasonable plant population.
周慧文, 罗含敏, 熊发前, 高轶静, 刘菁, 阳太亿, 闫海锋, 丘立杭. 蔗糖对植物分枝调控的研究进展[J]. 农业生物技术学报, 2024, 32(2): 458-470.
ZHOU Hui-Wen, LUO Han-Min, XIONG Fa-Qian, GAO Yi-Jing, LIU Jing, YANG Tai-Yi, YAN Hai-Feng, QIU Li-Hang. Research Progresses on the Regulation of Sucrose on Plant Branching. 农业生物技术学报, 2024, 32(2): 458-470.
[1] 陈骄羽. 2020. 毛竹IDD基因家族与笋芽发育的相关性研究[D]. 硕士学位论文, 浙江农林大学, 导师: 郭晓勤, pp. 28-43. (Chen J Y.2020. The correlation between IDD gene family and development of shoot/bud in Phyllostachys edulis[D]. Thesis for M.S., Zhejiang Agriculture and Forestry University, Supervisor: Guo X Q, pp. 28-43.) [2] 陈庆超, 赵杨. 2021. 植物光合产物源库流调控及其对干旱的响应[J]. 山西农业科学, 49(12): 1367-1375. (Chen Q C, Zhao Y.2021. Regulation of source-to-sink transport of plant photosynthetic products and its response to drought[J]. Journal of Shanxi Agricultural Sciences, 49(12): 1367-1375.) [3] 范吴蔚, 潘志演, 王原秀, 等. 2021. 独脚金内酯对烟草腋芽生长以及抗氧化酶活性和糖含量的影响[J]. 植物生理学报, 57(4): 910-918. (Fan W W, Pan Z Y, Wang Y X, et al.2021. Effects of strigolactone on the growth, antioxidant enzyme activities and sugar contents of axillary buds in tobacco[J]. Plant Physiology Journal, 57(4): 910-918.) [4] 冯冰, 孙雅菲, 艾昊, 等. 2018. 超表达蔗糖转运蛋白基因OsSUT1对水稻形态和生理的影响[J]. 中国水稻科学, 32(06): 549-556. (Feng B, Sun Y F, Ai Het al.2018. Overexpression of sucrose transporter OsSUT1 affects rice morphology and physiology[J]. Chinese Journal of Rice Science, 32(6): 549-556.) [5] 巩鹏涛, 李迪. 2005. 植物分枝发育的遗传控制. 分子植物育种, 3(2): 151-162. (Gong P T, Li D.2005. Genetic control of plant shoot branching[J]. Molecular Plant Breeding, 3(2): 151-162.) [6] 顾晓华. 2021. 远红光通过激素信号调控番茄侧枝发育的机制研究[D]. 硕士学位论文, 浙江大学, 导师: 夏晓剑,pp.16. (Gu X H. 2021. Research on the mechanism of far-red light regulating shoot branching through hormone signals in tomato[D]. Thesis for M.S., Zhejiang University, Supervisor: Xia X J, pp.16.) [7] 孔霞, 任羽, 孙玲燕, 等. 2021. 蝴蝶兰杂交后代观赏性状遗传分析[J]. 分子植物育种, 19(21): 7168-7178. (Kong X, Ren Y, Sun L Y, et al.2021. Genetic analysis of ornamental traits in hybrid progenies of a reciprocal crosses in Phalaenopsis[J]. Molecular Plant Breeding, 19(21): 7168-7178.) [8] 李春燕, 杨景, 张玉雪, 等. 2017. 小麦分蘖期冻害后增施恢复肥的产量挽回效应及其生理机制[J]. 中国农业科学, 50(10): 1781-1791. (Li C Y, Yang J, Zhang Y X, et al.2017. Retrieval effects of remedial fertilizer after freeze injury on wheat yield and its mechanism at tillering stage[J]. Scientia Agricultura Sinica, 50(10): 1781-1791.) [9] 李菊. 2015. 不结球白菜TCP家族转录因子基因BcBRC1的表达分析及分蘖性状遗传分析[D]. 硕士学位论文, 南京农业大学, 导师: 李英, pp. 19-27. (Li J.2015. Expressional analysis of TCP family transcriptional factor BcBRC1 gene and tillering trait genetic analysis in non heading chinese cabbage[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Li Y, pp. 19-27.) [10] 李孟珠, 王高鹏, 巫月, 等. 2020. 水稻蔗糖转运蛋白OsSUT4参与蔗糖转运的功能研究[J]. 中国水稻科学, 34(06): 491-498. (Li M Z, Wang G P, Wu Y, et al.2020. Function analysis of sucrose transporter OsSUT4 in sucrose transport in rice[J]. Chinese Journal of Rice Science, 34(6): 491-498.) [11] 李清平, 张秀飞, 梁明, 等. 2021. 果糖1, 6-二磷酸酯酶研究进展[J]. 聊城大学学报(自然科学版), 34(02): 73-80. (Li Q P, Zhang X F, Liang M, et al.2021. Researchprogress of fructose-1,6-bisphosphatase[J]. Journal of Liaocheng University (Nat. Sci.), 34(02): 73-80.) [12] 李婷婷, 薛璟祺, 王顺利, 等. 2018. 植物非结构性碳水化合物代谢及体内转运研究进展[J]. 植物生理学报, 54(01): 25-35. (Li T T, Xue J Q, Wang S L, et al.2018. Research advances in the metabolism and transport of non-structural carbohydrates in plants[J]. Plant Physiology Journal, 54(01): 25-35.) [13] 梁大曲, 石长双, 涂晶晶, 等. 2022. 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析[J]. 植物生理学报, 58(02): 447-457. (Liang D Q, Shi C S, Tu J J, et al.2022. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana[J]. Plant Physiology Journal, 58(02): 447-457.) [14] 刘婷, 王天浩, 淳雁, 等. 2022. 表观遗传调控植物分枝/分蘖研究进展[J]. 植物学报, 57(04): 532-548. (Liu T, Wang T H, Chun Y, et al.2022. Research progresses on epigenetic regulation of plant branching/tillering[J]. Chinese Bulletin of Botany, 57(04): 532-548.) [15] 刘洋, 林希昊, 姚艳丽, 等. 2012. 高等植物蔗糖代谢研究进展[J]. 中国农学通报, 28(06): 145-152. (Liu Y, Lin X H, Yao Y L, et al.2012. Sucrose metabolism in higher plants[J]. Chinese Agricultural Science Bulletin, 28(06): 145-152.) [16] 麦翠珊, 李方剑, 邓雅茹, 等. 2023. 高等植物糖信号转导研究进展[J]. 植物生理学报, 59(08): 1474-1488. (Mai C S, Li F J, Deng Y R, et al.2023. Recent advances in sugar signal transduction in higher plants[J]. Plant Physiology Journal, 59(08): 1474-1488.) [17] 潘瑞炽. 2012. 植物生理学.第7版[M]. 高等教育出版社, 北京, pp. 34-39. (Pan R C.2012. Plant Physiology[M].Higher Education Press, Beijing, pp. 34-39.) [18] 丘立杭, 范业庚, 罗含敏, 等. 2018. 甘蔗分蘖发生及成茎的调控研究进展[J]. 植物生理学报, 54(02): 192-202. (Qiu L H, Fan Y G, Luo H M, et al.2018. Advances of regulation study on tillering formation and stem forming from available tillers in sugarcane (Saccharum officinarum)[J]. Plant Physiology Journal, 54(02): 192-202.) [19] 石长双. 2020. 马尾松短枝腋芽萌发关键基因的挖掘[D]. 硕士学位论文, 贵州大学, 导师: 吴峰, pp. 24-50. (Shi C S.2020. Excavation of critical genes for axillary bud germination of Pinus massoniana[D]. Thesis for M.S., Guizhou University, Supervisor: Wu F, pp. 24-50.) [20] 石永春, 王旭, 王潇然, 等. 2019. 蔗糖信号调控植物生长和发育的研究进展[J]. 植物生理学报, 55(11): 1579-1586. (Shi Y C, Wang X, Wang X R, et al.2019. The regulatory role of sucrose as a signal in plant growth and development[J]. Plant Physiology Journal, 55(11): 1579-1586.) [21] 孙倩. 2020. 独脚金内酯调控番茄侧枝生长的功能研究[D]. 硕士学位论文, 浙江大学, 导师: 夏晓剑, pp. 43-44. (Sun Q.2020. Research on the function of strigolactones in the regulation of shoot branching in tomato[D]. Thesis for M.S., Zhejiang University, Supervisor: Xia X J, pp. 43-44.) [22] 王兵, 赵会纳, 余婧, 等. 2023, 植物侧枝发育的调控研究进展[J]. 生物技术通报, 39(5): 14-22. (Wang B, Zhao H N, Yu J, et al.2023. Research progress in the regulation of plant branch development[J]. Biotechnology Bulletin, 39(5): 14-22. ) [23] 夏雨桐, 王琛, 郝宁, 等. 2022. 植物分枝性研究进展及其在蔬菜育种中的应用[J]. 中国蔬菜, 1(01): 31-40. (Xia Y T, Wang C, Hao N, et al.2022. Research progress on plant branchiness and its application in vegetable breeding[J]. China Vegetables, 1(01): 31-40.) [24] 袁娅娟. 2021. 草地早熟禾根茎扩展与内源激素及碳氮代谢随生育时期的动态变化[D]. 硕士学位论文, 甘肃农业大学, 导师: 白小明, pp. 46. (Yuan Y J. 2021. Study on the dynamic changes of rhizome expansion, endogenous hormones, carbon and nitrogen metabolism of Poa pratensis during growth stage[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Bai X M, pp. 46.) [25] 岳萌萌. 2020. 水稻蔗糖转运蛋白OsSUT4的功能分析[D]. 博士学位论文, 山东农业大学, 导师: 孟庆伟, pp. 58-83. (Yue M M.2020. Functional analysis of a rice sucrose transporter OsSUT4[D]. Thesis for Ph.D., Shandong Agricultural University, Supervisor: Meng Q W, pp. 58-83.) [26] 张雅文, 包淑慧, 唐振家, 等. 2021. 蔗糖转运蛋白OsSUT5在水稻花粉发育及结实中的作用[J]. 中国农业科学, 54(16): 3369-3385. (Zhang Y W, Bao S H, Tang Z J, et al.Function of sucrose transporter OsSUT5 in rice pollen development and seed setting[J]. Scientia Agricultura Sinica, 54(16): 3369-3385.) [27] 张懿, 张大兵, 刘曼. 2015. 植物体内糖分子的长距离运输及其分子机制[J]. 植物学报, 50(1): 107-121. (Zhang Y, Zhang D B, Liu M, et al.2015. The molecular mechanism of long-distance sugar transport in plants[J]. Chinese Bulletin of Botany, 50(1): 107-121.) [28] 张泽钦, 周朝阳, 张小兰. 2022. 外施蔗糖促进黄瓜侧枝伸长[J].中国蔬菜, (07): 45-51. (Zhang Z Q, Zhou C Y, Zhang X L, et al. 2022. Applying sucrose promotes cucumber lateral branch outgrowth[J]. China Vegetables, (07): 45-51.) [29] Ahmad S, Yuan C, Yang Q, et al.2020. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in Chrysanthemum[J]. BMC Plant Biology, 20(1): 1-15. [30] Barbier F, Pe´ron T, Lecerf M, et al.2015. Sucrose is an early modulator of the key hormonal mecha-nisms controlling bud outgrowth in Rosa hybrida[J]. Journal of Experimental Botany, 66: 2569-2582. [31] Barbier F F, Cao D, Fichtner F, et al.2021. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways[J]. New Phytologist, 231: 1088-1104. [32] Barbier F, Fichtner F, Beveridge C.2023. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants[J]. Nature Plants, 9: 1191-1200. [33] Bertheloot J, Barbier F, Boudon F, et al.2020. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth[J]. New Phytologist, 225: 866-879. [34] Chen C, Yuan Y L, Zhang C, et al.2017. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit[J]. Plant Science, 255: 40-50. [35] Cheng J T, Wen S Y, Xiao S, et al.2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. Journal of Experimental Botany, 69(3): 511-523. [36] Dong H, Wang J, Song X, et al.2023. HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth[J]. Proceedings of the National Academy of Sciences of the USA, 120(16): e2301879120. [37] Eom J S, Cho, J I, Reinders A, et al.2011. Impaired function of the tonoplast-localized sucrose transporter in rice, ossut2, limits the transport of vacuolar reserve sucrose and affects plant growth[J]. Plant Physiology, 157(1): 109-119. [38] Evers J B, Krol A R, Vos J, et al.2011. Understandingshoot branching by modelling form and function[J]. Trends in Plant Science, 16(9): 464-467. [39] Fichtner F, Barbier F F, Annunziata M G, et al.2021. Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate[J]. New Phytologist, 229: 2135-2151. [40] Fichtner F, Barbier F F, Feil R, et al.2017. Trehalose 6‐phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.)[J]. The Plant Journal, 92(4): 611-623. [41] Figueroa C M, Lunn J E.2016. A tale of two sugars: Trehalose 6-phosphate and sucrose[J]. Plant Physiology, 172: 7-27. [42] Gu J, Zeng Z, Wang Y, et al.2020. Transcriptome analysis of carbohydrate metabolism genes and molecular regulation of sucrose transport gene LoSUT on the flowering process of developing oriental hybrid lily 'Sorbonne' bulb[J]. International Journal of Molecular Sciences, 21(9): 3092. [43] Hayward A, Stirnberg P, Beveridge C, et al.2009. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiology, 151(1): 400-412. [44] Henry C, Rabot A, Laloi M, et al.2011. Regulation of RhSUC2, a sucrose transporter, is correlated with the light control of bud burst in Rosa sp.[J]. Plant Cell Environ, 34(10): 1776-89. [45] Hubbard L, McSteen P, Doebley J, et al.2022. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte[J]. Genetics, 162: 1927-1935. [46] Jiang S, Wang D, Yan S, et al.2019. Dissection of the genetic architecture of rice tillering using a genome-wide association study[J]. Rice, 12: 43. [47] Karine M, Berenhauser L G, Marc B, et al.2004. Trophic control of bud break in peach (Prunus persica) trees: A possible role of hexoses[J]. Tree Physiology, 24(5): 579-588. [48] Kebrom T H, Brutnell T P, Finlayson S A.2010. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways[J]. Plant, Cell & Environment, 33: 48-58. [49] Kebrom T H, Chandler P M, Swain S M, et al.2012. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development[J]. Plant Physiology, 160(1): 308-318. [50] Kebrom T H, Mullet J E.2016. Transcriptome profiling of tiller buds provides new insights into phyb regulation of tillering and indeterminate growth in Sorghum[J].Plant physiology, 170(4): 2232-2250. [51] Kelly G, Schwartzr D.2012. The pitfalls of transgenic se lection and newroles of AtHXK1: A high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar[J]. Plant Physiology, 159(1): 47-51. [52] Koumoto T, Shimada H, Kusano H, et al.2013. Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-bisphosphatase[J]. Plant Biotechnology, 30(1): 47-56. [53] Kushwah S, Laxmi A.2014. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana[J]. Plant, Cell & Environment, 37(1): 235-253. [54] Li Z Y, Wei X J, Tong X H, et al.2022. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice[J]. Molecular Plant, 15(4): 706-722. [55] Liu W X, Peng B, Song A P, et al.2020. Sugar transporter, CmSWEET17, promotes bud outgrowth in Chrysanthemum morifolium[J]. Genes, 11(1): 26. [56] Liu W X, Peng B, Song A P, et al.2022. Sucrose-induced bud outgrowth in Chrysanthemum morifolium involves changes of auxin transport and gene expression[J]. Scientia Horticulturae, 296: 110904. [57] Lunn J E, Feil R, Hendriks J H M, et al.2006. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana[J]. Biochemical Journal, 397: 139-148. [58] Lv Y, Ma J, Wang Y Y, et al.2021. Loci and natural alleles for low-nitrogen-induced growth response revealed by GWAS analysis in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 81(8): 1470-1477. [59] Mason M G, Ross J J, Babst B A, et al.2014. Beveridge, sugar demand, not auxin, is the initial regulator of apical dominance[J]. Proceedings of the National Academy of Sciences of the USA, 111(16): 6092-6097. [60] Miyagawa Y, Tamoi M, Shigeoka S.2001. Overexpression of a cyanobacterial fructose-1, 6-bisphosphatase、sedoheptulose-1, 7-bisphosphatase in tobacco enhances photosynthesis and growth[J]. Nature Biotechnology, 19(10): 965-969. [61] Ohashi M, Ishiyama K, Kusano M, et al.2018. Reduction in sucrose contents by downregulation of fructose-1, 6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2[J]. Rice, 11(1): 1-11. [62] Otori K, Tamoi M, Tanabe N, et al.2020. Enhancements in sucrose biosynthesis capacity affect shoot branching in Arabidopsis[J]. Bioscience, Biotechnology, and Biochemistry, 81(8): 1470-1477. [63] Patil S B, Barbier F F, Zhao J, et al.2022. Sucrose promotes D53 accumulation and tillering in rice[J]. New Phytologist, 234(1): 122-136. [64] Poovaiah C R, Mazarei M, Decker S R, et al.2015. Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1)[J]. Biotechnology Journal, 10(4): 552-563. [65] Rabot A, Henry C, Ben Baaziz K, et al.2012. Insight into the role of sugars in bud burst under light in the rose[J]. Plant & Cell Physiology, 53(6): 1068-1082. [66] Ruan Y L.2012. Signaling role of sucrose metabolism in development[J]. Molecular Plant, 5(4): 763-765. [67] Sakr S, Wang M, Dédaldéchamp F, et al.2018. The Sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network[J]. International Journal of Molecular Sciences. 19(9): 2506. [68] Salam B B, Barbier F, Danieli R, et al.2021. Sucrose promotes stem branching through cytokinin[J]. Plant Physiology, 185(4): 1708-1721. [69] Salam B B, Malka S K, Zhu X, et al.2017. Etiolated stem branching is a result of systemic signaling associated with sucrose level[J]. Plant Physiology, 175: 734-745. [70] Schneider A, Godin C, Boudon F, et al.2019. Light regulation of axillary bud outgrowth along plant axes: An overview of the roles of sugars and hormones[J]. Frontiers in Plant Science, 10: 1296. [71] Tamoi M, Hiramatsu Y, Nedachi S, et al.2011. Increase in the activity of fructose-1, 6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels[J]. Photosynthesis Research, 108(1): 15-23. [72] Tsai A Y, Gazzarrini S.2014. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: The emerging picture[J]. Frontiers in Plant Science, 5: 119. [73] Wang F, Han T W, Song Q X, et al.2020. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing[J]. The Plant Cell, 32(10): 3124-3138. [74] Wang M, Le G J, Jiao F, et al.2021. Convergence and divergence of sugar and cytokinin signaling in plant development[J]. International Journal of Molecular Sciences, 22(3): 1282. [75] Wolosiuk R A, Buchanan B B.1978. Activation of chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenaseby ferredoxin/thioredoxin system[J]. Plant Physiology, 61: 669-671. [76] Wu Y F, Lee S K, Yoo Y C, et al.2020. Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes[J]. Molecular Plant, 11(6): 833-845. [77] Xia X, Dong H, Yin Y, et al.2021. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J]. Proceedings of the National Academy of Sciences of the USA, 118(11): e2004384118. [78] Xu F, Wang K, Yuan W, et al.2019. Overexpression of rice aquaporin OsPIP1;2 improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport[J]. Journal of Experimental Botany, 70(2): 671-681. [79] Yadav U P, Ivakov A, Feil R.et al.2014. The sucrose-trehalose 6-phos-phate (Tre6P) nexus: Specificity and mechanisms of sucrose signallingby Tre6P[J]. Journal of Experimental Botany, 65: 1051-1068. [80] Yuan M, Wang S.2013. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms[J]. Molecular Plant, 6: 665-674. [81] Zou J H, Zhang S Y, Zhang W P, et al.2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. Plant Journal, 48(5): 687-698.