Abstract:Establishment of plant regeneration system is essential for plant genetic transformation, and the use of antibiotics in plant genetic transformation systems is detrimental to cell differentiation, thus exacerbating the difficulty of establishing plant regeneration systems. Overexpression of the DELLA protein GbGAI4 (GAI: gibberellic acid insensitive) gene confers plant dwarfism, which is a visible and easily recognizable morphological phenotype in plants, and is expected to be used as a morphological screening marker in plant genetic transformation systems. In this study, pTA7002-GbGAI4 vector was constructed, the embryo tips of island cotton (Gossypium barbadense) 'Xinhai16' was infiltrated by Agrobacterium-mediated method, the expression of GbGAI4 gene was induced by dexamethasone, and then preliminarily screened out the transformed plants with dwarf characters, and further identified the transgenic plants with RT-PCR technology, so as to establish a noval genetic transformation system in cotton. Based on this, the growth-regulating factors (GRF) GRF4 was selected as the example gene for transgenic transformation based on the GbGAI4-mediated genetic transformation system, and a gene transformation rate of (4±0.6)% was obtained. This study provides a new genetic transformation platform for molecular breeding of cotton.
姑扎丽努尔·吐鲁洪, 张佳伟, 李悦, 王晓云, 张霞. DELLA蛋白介导的海岛棉新型遗传转化体系的建立[J]. 农业生物技术学报, 2024, 32(11): 2681-2690.
Guzhalinuer•TULUHONG, ZHANG Jia-Wei, LI Yue, WANG Xiao-Yun, ZHANG Xia. Establishment of a Novel DELLA Protein-mediated Genetic Transformation System in Gossypium barbadense. 农业生物技术学报, 2024, 32(11): 2681-2690.
[1] 阿里甫·艾尔西, 朱家辉, 李进, 等. 2020. 新疆长绒棉育种现状、趋势及研究进展[J]. 新疆农业科学, 57(3): 393. (Alipu A, Zhu J H, Li J, et al.2020. Progress, problems and prospects of xinjiang long-staple cotton (G.barbadense L.) breeding[J]. Xinjiang Agricultural Science, 57(3): 393-400.) [2] 李娟. 2017. GbWOX9基因植物表达载体的构建及对海岛棉胚性细胞的遗传转化[D]. 硕士学位论文, 新疆农业大学, 导师: 高文伟, pp. 14-15, 28-29. (Li J.2017. Construction of plant expression vector of GbWOX9 gene and genetic transformation of island cotton embryo sex cells[D]. Thesis for M. S., Xinjiang Agricultural University, Supervisor: Gao W W, pp. 14-15, 28-29.) [3] 蒙贞, 冉亚清. 2023. 新疆棉花产业高质量发展现状问题及对策[J]. 南方农业, 17(15): 240-247. (Meng Z, Ran Y Q, 2023. Problems and countermeasures of high-quality development of Xinjiang cotton industry[J]. Southern Agriculture, 17(15): 240-247.) [4] 莫荣利, 张娜, 于翠, 等. 2022. 基于根癌农杆菌真空渗透介导的桑树离体瞬时转化方法. 中国, CN202211391920.1[P]. (Mo R L, Zhang N, Yu C, et al.2022. Based transient transformation of Agrobacterium tumefaciens. China, CN202211391920.1[P].) [5] 谢德意, 金双侠, 郭小平, 等. 2007. 长江和黄河流域棉区棉花品种体细胞胚胎发生和植株再生比较研究[J]. 作物学报, 33: 394-400. (Xie D Y, Jin S X, Guo X P, et al.2007. Comparative study on somatic embryogenesis and plant regeneration in cotton varieties of the Yangtze and Yellow River basins[J]. Crop Journal, 33: 394-400.) [6] 杨瑞思. 2020. 海岛棉新海16体胚发生体系的优化及GbGAI4基因在海岛棉体胚发生过程中的功能研究[D]. 硕士学位论文, 新疆农业大学, 导师: 张霞, pp. 14-18. (Yang R S.2020. Optimization of the somatic embryogenesis system in Gossypium barbadense Xinhai 16 and of functional identification of GbGAI4 gene in G. barbadense somatic embryogenesis[D]. Thesis for M. S., Xinjiang Agricultural University, Supervisor: Zhang X, pp. 14-18.) [7] Che P, Chang S, Simon M K, et al.2022. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants[J].The Plant Journal, 106(3): 817-830. [8] Fukazawa J, Ohashi Y, Takahashi R, et al.2021. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis[J]. The Plant Cell, 33(7): 2258-2272. [9] Ge X, Xu J, Yang Z, et al.2023. Efficient genotype‐independent cotton genetic transformation and genome editing[J]. Journal of Integrative Plant Biology, 65(4): 907-917. [10] Gomez M D, Cored I, Barro-Trastoy D, et al.2023. DELLA proteins positively regulate seed size in Arabidopsis[J]. Development, 150(15): dev201853. [11] He Y, Zhang T, Sun H, et al.2020. A reporter for noninvasively monitoring gene expression and plant transformation[J]. Horticulture Research, 7: 152. [12] Huang T D, Xin S C, Fang Y J, et al.2021. Use of a novel R2R3-MYB transcriptional activator of anthocyanin biosynthesis as visual selection marker for rubber tree (Hevea brasiliensis) transformation[J]. Industrial Crops and Products, 174: 114225. [13] Ma Z, Liu J, Wang X.2013. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition[J]. In Transgenic Cotton: Methods and Protocols, 958: 211-222. [14] Maren N A, Duan H, Da K, et al.2022. Genotype-independent plant transformation[J]. Horticulture Research, 9: uhac047. [15] Mei G, Chen A, Wang Y, et al.2024. A simple and efficient in planta transformation method based on the active regeneration capacity of plants[J]. Plant Communications, 5(4): 100822. [16] Penna S, Ganapathi T R.2010. Engineering the plant genome: Prospects of selection systems using non-antibiotic marker genes[J]. GM Crops, 1(3): 128-136. [17] Ramkumar T R, Lenka S K, Arya S S, et al.2020. A short history and perspectives on plant genetic transformation[J]. Methods in Molecular Biology, 2124: 39-68. [18] Serrano-Mislata, Bencivenga S, Bush M, et al.2017. DELLA genes restrict inflorescence meristem function independently of plant height[J]. Nature Plants, 3(9): 749-754. [19] Shi B, Vernoux T.2022. Hormonal control of cell identity and growth in the shoot apical meristem[J]. Current Opinion in Plant Biology, 65: 102-111. [20] Tamizi A A, Md-Yusof A A, Mohd-Zim N A, et al.2023. Agrobacterium-mediated in planta transformation of cut coleoptile: A new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice[J]. Molecular Biology Reports, 50(11): 9353-9366. [21] Tungsuchat-Huang, Tarinee, Pal M.2021. Plastid marker gene excision in the tobacco shoot apex by agrobacterium-delivered Cre recombinase[M]. Chloroplast Biotechnology: Methods and Protocols. New York, NY: Springer US, pp. 177-193. [22] Wang Y, Yu W, Dou Y, et al.2021. DELLA-NAC interactions mediate GA signaling to promote secondary cell wall formation in cotton stem[J]. Frontiers in Plant Science, 12: 655127. [23] Xu P, Chen H, Li T, et al.2021. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis[J]. The Plant Cell, 33(7): 2375-2394.