Characterization Analysis and Functional Study of Proteins g5965 of Tilletia foetida
SU Shen-Qiang1,3, WEN Zhi-Wei1, WANG Xin1,3, LIU Qi1,*, GAO Li2,3,*
1 College of Agronomy/Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Xinjiang Agricultural University, Urumqi 830052 , China; 2 National Nan fan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China; 3 Institute of Plant ProtectioState, Key Laboratory for Biology of Plant Diseases and Insect Pestsn, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract:Wheat common bunt is one of the major wheat diseases which caused by Tilletia foetida, not only reducing wheat yield, but also deteriorating the quality of the wheat. To investigate the interaction mechanism between the common bunt fungus T. foetida and Triticum aestivum, a candidate effector protein g5965 (GenBank No. XXN76190.1) belonging to the protein kinase superfamily was cloned via RT-PCR.The results of bioinformatics analysis revealed that the g5965 gene had a full length of 1 722 bp, encoded 573 amino acids, and contained a typical phosphotransferase domain. Its signal peptide secretion function had been verified through signal peptide secretion assays. Constructed the PGR107-g5965 fusion expression vector and transiently expressed it in the leaves of Nicotiana benthamiana via Agrobacterium-mediated transformation. The g5965 protein did not suppress the programmed cell death (PCD) response in tobacco cells induced by the pro-apoptotic protein BAX (Bcl-2 associated X protein). The green fluorescent protein (GFP) expression vector pBIN-g5965 was constructed and used to infect N. benthamiana leaves. The green fluorescence was observed at the cell membrane of tobacco cells under a laser scanning confocal microscope after 2~3 d.This study provides a certain theoretical basis for further elucidating the pathogenic mechanism of T. foetida against the wheat.
粟神强, 文智伟, 王昕, 刘琦, 高利. 小麦光腥黑粉菌g5965蛋白的特性分析与功能研究[J]. 农业生物技术学报, 2026, 34(1): 129-138.
SU Shen-Qiang, WEN Zhi-Wei, WANG Xin, LIU Qi, GAO Li. Characterization Analysis and Functional Study of Proteins g5965 of Tilletia foetida. 农业生物技术学报, 2026, 34(1): 129-138.
[1] 崔晓敏, 季东超, 陈彤, 等. 2021. 类受体激酶FER调节植物与病原菌相互作用的分子机制[J]. 植物学报, 56(03): 339-346. (Cui X M, Ji D C, Chen D, et al.2021. Molecular mechanisms of fer receptor-like kinase in regulating plant-pathogen interactions[J]. Journal of Plant Biology, 56(03): 339-346.) [2] 段凯莉, 江聪, 王光辉. 2021. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 11(05): 618-627. (Duan K L, Wang C, Wang G H.2021. Progress in the study of protein kinases in Fusarium graminearum[J]. Advances in Biotechnology, 11(05): 618-627.) [3] 郭志浩, 金泽鑫, 刘琦, 等. 2022. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 38(8): 110-117. (Guo Z H, Jin Z X, Liu Q, et al.2022. Bioinformatics analysis, subcellular localization, and virulence verification of the effector protein g11335 from Tilletia controversa Kühn[J]. Bulletin of Biotechnology, 38(8): 110-117.) [4] 蒋耀培, 郭玉人, 唐国来, 等. 2009. 2009年上海地区小麦光腥黑穗病发生原因及其综合防治措施[J]. 中国植保导刊, 29(9): 18+11. (Jiang Y P, Guo Y R, Tang G L, et al.2009. The causes of wheat loose smut in Shanghai in 2009 and integrated control measures[J]. Chinese Journal of Plant Protection, 29(9): 18+11.) [5] 蒋应磊, 罗超, 陈诗雯, 等. 2024. 小麦条锈菌新菌系CYR34中CDK5基因的克隆及生物信息学分析[J]. 西北农业学报, 33(1): 133-140. (Jiang Y L, Luo C, Chen S W, et al.2024. Cloning and bioinformatic characterization of the CDK5 gene in the new Puccinia striiformis f. sp. tritici Race CYR34 (wheat stripe rust pathogen)[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 33(1): 133-140.) [6] 金泽鑫, 刘琦, 高利. 2024. 小麦矮腥黑粉菌g1070基因的克隆、生物信息学分析与亚细胞定位[J/OL]. 分子植物育种: 1-13[2025-11-19]. https://link.cnki.net/urlid/46.1068.S.20230804.1458.010. (Jin Z X, Liu Q, Gao L.2024. Cloning, bioinformatics analysis, and subcellular localization of the g1070 gene from Tilletia controversa Kühn[J/OL]. Molecular Plant Breeding: 1-13[2025-11-19]. https://link.cnki.net/urlid/46.1068.S.20230804.1458.010. [7] 李延博, 王俊刚, 赵婷婷, 等. 2021. 甘蔗新基因ShUGT2的生物信息学分析及亚细胞定位[J]. 热带农业科学, 41(5): 25-32. (Li Y B, Wang J G, Zhao T T, et al.2021. Bioinformatics analysis and subcellular localization of the new gene ShUGT2 in sugarcane[J]. Journal of Tropical Agriculture, 41(5): 25-32. [8] 刘倩倩, 胡登辉, 祝金栋, 等. 2022. 蛋白激酶FgBud32参与禾谷镰刀菌的生长发育、致病和胁迫应答[J]. 菌物学报, 41(09): 1483-1497. (Liu Q Q, Hu D H, Zhu J D, et al.2022. Protein kinase FgBud32 is involved in the growth, development, pathogenicity, and stress response of Fusarium graminearum[J]. Mycosystema, 41(09): 1483-1497.) [9] 刘锐, 刘晶晶, 钟钰, 等. 2022. 中国小麦国际竞争力分析[J]. 麦类作物学报, 42(09): 1087-1098. (Liu R, Liu J J, Zhong Y, et al.2022. Analysis of the international competitiveness of chinese wheat[J]. Journal of Triticeae Crops, 42(09): 1087-1098.) [10] 马博雅, 李莹莹, 优丽图孜•乃比, 等. 2024. 西瓜食酸菌Ⅲ型效应蛋白AopBF1的鉴定与功能分析[J]. 微生物学通报, 51(1): 189-208. (Ma B Y, Li Y Y, Yulituzi N B, et al.2024. Identification and functional analysis of the type Ⅲ effector protein aopbf1 from Acidovorax citrulli[J]. Microbiology Bulletin, 51(1): 189-208.) [11] 马骏豪, 文智伟, 郭笑维, 等. 2024. 小麦矮腥黑粉菌效应蛋白g4418的毒性验证及亚细胞定位[J]. 麦类作物学报, 44(06): 735-741. (Ma J H, Wen Z W, Guo X W, et al.2024. To xicity verification and subcellular localization of effector g4418 of Tilletia controversa Kühn[J]. Journal of Triticeae Crops, 44(06): 735-741.) [12] 戚晓清, 周雅萍, 柳菁溪, 等. 2024. 菰黑粉菌UePkc1克隆及其在菌丝生长与被侵染菰中的表达分析[J]. 农业生物技术学报, 32(4): 843-858. (Qi X Q, Zhou Y P, Liu Q X, et al.2024. Cloning of UePkc1 from Ustilago esculenta and Its expression analysis in hyphal growth and infected zizania[J]. Journal of Agricultural Biotechnology, 32(4): 843-858.) [13] 沈慧敏, 高利, 李超, 等. 2017. 小麦光腥黑粉菌原生质体的制备与再生[J]. 中国植保导刊, 37(10): 14-18. (Shen H M, Gao L, Li C, et al.2017. Isolation and regeneration of Tilletia caries protoplasts[J]. Chinese Journal of Plant Protection, 2017, 37(10): 14-18.) [14] 沈潼, 肖越, 粟神强, 等. 2024. 矮腥黑粉菌胁迫的小麦全基因组重测序与转录组联合分析[J]. 分子植物育种, 22(9): 2793-2801. (Shen T, Xiao Y, Su S Q, et al.2024. Combined analysis of whole genome re-sequencing and transcriptome of wheat under the stress of Tilletia controversa Kühn[J]. Molecular Plant Breeding, 22(9): 2793-2801.) [15] 王昕, 沈煜洋, 张子豪, 等. 2023. 270份冬麦品种(系)对光腥黑穗病的抗性评价[J]. 新疆农业大学学报, 46(04): 301-317. (Wang X, Shen Y Y, Zhang Z H, et al.2023. Evaluation of the resistance to loose smut disease in 270 winter wheat varieties (lines)[J]. Journal of Xinjiang Agricultural University, 46(04): 301-317.) [16] 吴秀芹, 罗金燕, 范思键, 等. 2018. 小麦光腥黑粉菌的鉴别及其检测技术的研究进展[J]. 植物检疫, 32(03): 1-4. (Wu X Q, Luo J Y, Fan S J, et al.2018. Advances in the identification and detection techniques of Tilletia caries, the pathogen of wheat loose smut[J]. Plant Quarantine, 32(03): 1-4.) [17] 许停, 刘太国, 高利, 等. 2023. 小麦矮腥黑粉菌g9890基因编码效应蛋白的生物信息学分析及亚细胞定位[J]. 植物保护学报, 50(4): 866-872. (Xu T, Liu T G, Gao L, et al.2023. Bioinformatics analysis and subcellular localization of the effector protein encoded by the g9890 gene of Tilletia controversa Kühn[J]. Acta Phytophylacica Sinica, 50(4): 866-872.) [18] 赵广才, 常旭虹, 王德梅, 等. 2018. 小麦生产概况及其发展[J]. 作物杂志, 34(04): 1-7. (Zhao G C, Chang X H, Wang D M, et al.2018. An overview of wheat production and its development[J]. Journal of Crops, 34(04): 1-7.) [19] Ciuca M.2011. A preliminary report on the identification of ssr markers for bunt (Tilletia sp.) resistance in wheat[J]. Czech Journal of Genetics and Plant Breeding, 47: 142-145. [20] Dickman M B, Yarden O.1999. Serine/threonine protein kinases and phosphatases in filamentous fungi[J]. Fungal Genetics and Biology, 26(2): 99-117. [21] Duran R, Villarino A, Bellinzoni M, et al.2005. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases[J]. Biochemical and Biophysical Research Communications, 333(3): 858-867. 0 [22] Faucher S P, Charles V, Pierre-Paul G, et al.2008. The prpZ gene cluster encoding eukaryotic-type Ser/Thr protein kinases and phosphatases is repressed by oxidative stress and involved in Salmonella enterica serovar ty survival in human macrophages[J]. Fems Microbiology Letters, 281(2): 160-166. [23] He T, Xu T, Muhae-Ud-Din G, et al.2022. ITRAQ-Based proteomic analysis of wheat (Triticum aestivum) spikes in response to Tilletia controversa Kühn and Tilletia foetida Kühn infection, causal organisms of dwarf bunt and common bunt of wheat[J]. Biology (Basel), 11(6): 865. [24] Jia Y F, Shen T, Wen Z W, et al.2023. Combining transcriptome and whole genome re-sequencing to screen disease resistance genes for wheat dwarf bunt[J/OL]. International Journal of Molecular Sciences, 24: 17356. [25] Kamoun S.2006. A catalogue of the effector secretome of plant pathogenic oomycetes[J]. Annual Review of Phytopathology, 44: 41-60. [26] Mourad A, Sallam A, Belamkar V, et al.2018. Genetic architecture of common bunt resistance in winter wheat using genome-wide association study[J/OL]. BMC Plant Biology, 18(1): 280. [27] Pereira S, Goss L, Dworkin J.2011. Eukaryote-like serine/threonine kinases and phosphatases in bacteria[J]. Microbiology and Molecular Biology Reviews, 75(1): 192-212. [28] Petit-Houdenot Y, Fudal I.2017. Complex interactions between fungal a virulence genes and their corresponding plant resistance genes and consequences for disease resistance management[J]. Frontiers in Plant Science, 8: 1072. [29] Simon U, Armin D, Cyril Z.2018. Effectors of plant-colonizing fungi and beyond[J]. PLOS Pathogens, 14(6): e1006992. [30] Su S Q, Zhang Z H, Shen T, et al.2023. Kernel transcriptome profiles of susceptible wheat genotypes in response to wheat dwarf bunt[J]. International Journal of Molecular Sciences, 24: 17281. [31] Toruno T Y, Stergiopoulos I, Coaker G.2016. Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners[J]. Annual Review of Phytopathology, 54(1): 419-441. [32] Wu Y F, Xie L H, Jiang Y M, et al.2022. Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review[J]. International Journal of Biological Macromolecules, 206: 188-202.