Research Progress on Reproductive Containment Technologies of Fish
TAO Bin-Bin, HU Wei*
Institute of Hydrobiology/State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture/Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China
Abstract:Reproductive containment in farmed fish holds significant application potential in improving economic traits, ensuring the industrialization of biological breeding, and protecting intellectual property (IP). Currently, interspecific hybridization and triploid sterility methods have achieved success in the production of sterile broodstock for a limited number of farmed fish species. However, due to technical limitations, these approaches have not yet been widely adopted on a large scale. With the identification of key genes regulating reproduction, the elucidation of gene functions, and advances in genetic engineering techniques, sterile fish can be generated by knocking down or knocking out genes associated with reproduction. However, sterile fish produced directly through gene loss cannot pass on desirable economic traits to the next generation, making it difficult to establish stable families. Therefore, further research is needed on methods to rescue the parental sterility phenotype, such as through exogenous hormone supplementation. Conditional induced sterility and reproductive on-off strategies based on two-line hybridization represent novel approaches to reproductive containment. These techniques enable reproductive containment in fish while ensuring the stable inheritance of parental desirable economic traits. The technical approaches have been preliminarily validated in model fish species, demonstrating promising development prospects. This review summarizes advances in fish reproductive containment technologies, aiming to provide references for breeding economically valuable, ecologically friendly, and IP-protected sterile farmed fish, such as grass carp (Ctenopharyngodon idellus).
陶彬彬, 胡炜. 鱼类育性控制技术研究进展[J]. 农业生物技术学报, 2026, 34(1): 1-12.
TAO Bin-Bin, HU Wei. Research Progress on Reproductive Containment Technologies of Fish. 农业生物技术学报, 2026, 34(1): 1-12.
[1] 樊阳, 李小勤, 李家乐, 等. 2025. 不同饲料蛋白质水平下“沪苏1号”草鱼与普通草鱼生长性能、肝肠组织学和生长相关基因表达的比较[J]. 水产学报, 49(9): 178-191. (Fan Y, Li X Q, Li J L, et al., 2025. Comparing the growth, hepatopancreatic and intestinal histology, and growth-related genes expression of “Husu-1” and common Ctenopharyngodon idella at different dietary protein levels[J]. Journal of Fisheries of China, 49(9): 178-191.) [2] 鲁蒙, 周莉, 桂建芳. 2024. “无减数融合”生殖方式的发现及其育种实践意义[J]. 科学通报, 69(19): 2704-2706. (Lu M, Zhou L, Gui J F.2024. Discovery of ameio-fusiongenesis and its breeding applications[J]. Chinese Science Bulletin, 69(19): 2704-2706.) [3] 陶彬彬, 胡炜. 2023. 鱼类原始生殖细胞发育与生殖操作技术研究进展[J]. 水产学报, 47(1): 019107. (Tao B B, Hu W.2023. Research progress on primordial germ cell development and reproductive manipulation techniques of fish[J]. Journal of Fisheries of China, 47(1): 019107) [4] 王石, 汤陈宸, 陶敏, 等. 2018. 鱼类远缘杂交育种技术的建立及应用[J]. 中国科学: 生命科学, 48(12): 1310-1329. (Wang S, Tang C C, Tao M, et al.2018. Establishment and application of distant hybridization technology in fish[J]. Science China: Life Science, 48(12): 1310-1329) [5] 杨宇航, 徐承旭. 2025. 亚东鲑三倍体制种获突破[J]. 水产科技情报, 52(05): 338. (Yang Y H, Xu C X.2025. Breakthrough achieved in triploid breeding of Salmo trutta fario (Yadong Trout)[J]. Fish Science &Technology Information, 52(05): 338.) [6] 殷战, 石生持, 李学辉, 等. 2025. 鱼类基因编辑辅助育种的应用与生物安全风险管控[J]. 水生生物学报, 49(1): 012501. (Yin Z, Shi S C, Li X H, et al.2025. Biosafety assessment and management of genome editing assisted breeding of farmed fish[J]. Acta Hydrobiologica Sinica, 49(1): 012501.) [7] Baloch A R, Franek R, Tichopád T, et al.2019. Dnd1 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate production[J]. Animals, 9(4): 174. [8] Bazaz A I, Shah T H, Bhat F A, et al.2025. Production of sterile trout (Triploids) by chromosome set manipulation using thermal shock treatment in rainbow trout (Oncorhynchus mykiss) from Kashmir Himalayas[J]. Zygote, 33(1): 10-18. [9] Benfey T J2016. Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study[J]. Reviews in Aquaculture, 8(3): 264-282. [10] Biswas A K, Morita T, Yoshizaki G, et al.2005. Control of reproduction in Nile tilapia Oreochromis niloticus (L.) by photoperiod manipulation[J]. Aquaculture, 243(1-4): 229-239. [11] Blanc J M, Chevassus B1986. Survival, growth and sexual maturation of the tiger trout hybrid (Salmo trutta ♀ × Salvelinus fontinalis ♂)[J]. Aquaculture, 52(1): 59-69. [12] Bontems F, Stein A, Marlow F, et al.2009. Bucky ball organizes germ plasm assembly in zebrafish[J]. Current Biology, 19(5): 414-422. [13] Chen J, Hu W, Zhu Z Y2013. Progress in studies of fish reproductive development regulation[J]. Chinese Science Bulletin, 58(1): 7-16. [14] Chevassus B1979. Hybridization in salmonids-results and perspectives[J]. Aquaculture, 17(2): 113-128. [15] Chourrout D, Chevassus B, Krieg F, et al.1986. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females-Potential of tetraploid fish[J]. Theoretical and Applied Genetics, 72(2): 193-206. [16] Chu L H, Li J Z, Liu Y, et al.2015. Gonadotropin signaling in zebrafish ovary and testis development: Insights from gene knockout study[J]. Molecular Endocrinology, 29(12): 1743-1758. [17] Chu L H, Li J Z, Liu Y, et al.2014. Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction[J]. Molecular Endocrinology, 28(11): 1785-1795. [18] Chu W K, Huang S C, Chang C F, et al.2025. Knockout of dead end 1 by CRISPR/Cas9 leads to loss of germ cells and male-biased sex development in freshwater angelfish (Pterophyllum scalare)[J]. Aquaculture, 599(3): 742180. [19] Cui X F, Chen L, Tao B B, et al.2025. Olfactory GnRH3 crypt sensory neurons transduce sex pheromone signals to induce male courtship behavior in zebrafish[J]. Science China-Life Sciences, 68(8): 2191-2205. [20] D'orazio F M, Balwierz P J, Gonzalez A J, et al.2021. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization[J]. Developmental Cell, 56(5): 641-656. [21] Dai X Y, Jin X, Chen X W, et al.2015. Sufficient numbers of early germ cells are essential for female sex development in zebrafish[J]. PLOS ONE, 10(2): e0117824. [22] Devlin R H, Sakhrani D, Biagi C A, et al.2010. Occurrence of incomplete paternal-chromosome retention in GH-transgenic coho salmon being assessed for reproductive containment by pressure-shock-induced triploidy[J]. Aquaculture, 304(1-4): 66-78. [23] Devlin R H, Sundström L F, Muir W M2006. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish[J]. Trends in Biotechnology, 24(2): 89-97. [24] Doitsidou M, Reichman-Fried M, Stebler J, et al.2002. Guidance of primordial germ cell migration by the chemokine SDF-1[J]. Cell, 111(5): 647-659. [25] Dubé P, Blanc J-M, Chouinard M, et al.1991. Triploidy induced by heat shock in brook trout (Salvelinus fontinalis)[J]. Aquaculture, 92(4): 305-311. [26] FAO. The State of World Fisheries and Aquaculture 2024-Blue Transformation in Action[C], Rome, 2024: 11-12. [27] Feng K, Cui X F, Song Y L, et al.2020. Gnrh3 regulates PGC proliferation and sex differentiation in developing zebrafish[J]. Endocrinology, 161(1): bqz024. [28] Fjelldal P G, Hansen T2010. Vertebral deformities in triploid Atlantic salmon (Salmo salar L.) underyearling smolts[J]. Aquaculture, 309(1): 131-136. [29] Fjelldal P G, Imsland A, Hansen T2012. Vaccination and elevated dietary phosphorus reduces the incidence of early sexual maturation in Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 364-365: 333-337. [30] Fujihara R, Katayama N, Sadaie S, et al.2022. Production of germ cell-less rainbow trout by dead end gene knockout and their use as recipients for germ cell transplantation[J]. Marine Biotechnology, 24(2): 417-429. [31] Fujimoto T, Nishimura T, Goto-Kazeto R, et al.2010. Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish[J]. Proceedings of the National Academy of Sciences of the USA, 107(40): 17211-17216. [32] Gossen M, Bujard H1992. Tight control of gene-expression in mammalian-cells by tetracycline-responsive promoters[J]. Proceedings of the National Academy of Sciences of the USA, 89(12): 5547-5551. [33] Gui J-F, Zhou L, Li X-Y2022. Rethinking fish biology and biotechnologies in the challenge era for burgeoning genome resources and strengthening food security[J]. Water Biology and Security, 1(1): 100002. [34] Güralp H, Skaftnesmo K O, Kjærner-Semb E, et al.2020. Rescue of germ cells in crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon[J]. Scientific Reports, 10(1): 18042. [35] Harris J, Bird D J2000. Modulation of the fish immune system by hormones[J]. Veterinary Immunology and Immunopathology, 77(3-4): 163-176. [36] Hendry A P, Beall E2004. Energy use in spawning Atlantic salmon[J]. Ecology of Freshwater Fish, 13(3): 185-196. [37] Hong N, Li M Y, Yuan Y M, et al.2016. Dnd is a critical specifier of primordial germ cells in the medaka fish[J]. Stem Cell Reports, 6(3): 411-421. [38] Hou M X, Feng K, Luo H R, et al.2022. Complete depletion of primordial germ cells results in masculinization of Monopterus albus, a protogynous hermaphroditic fish[J]. Marine Biotechnology, 24(2): 320-334. [39] Hu S Y, Lin P Y, Liao C H, et al.2010. Nitroreductase-mediated gonadal dysgenesis for infertility control of genetically modified zebrafish[J]. Marine Biotechnology, 12(5): 569-578. [40] Hu W, Li S F, Tang B, et al.2007a. Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio)[J]. Aquaculture, 271(1-4): 498-506. [41] Hu W, Wang Y P, Zhu Z Y2007b. Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies[J]. Science in China Series C-Life Sciences, 50(5): 573-579. [42] Ignatz E H, Braden L M, Benfey T J, et al.2020. Impact of rearing temperature on the innate antiviral immune response of growth hormone transgenic female triploid Atlantic salmon (Salmo salar)[J]. Fish Shellfish Immunol, 97: 656-668. [43] Jin Y N, Schlueter P J, Jurisch-Yaksi N, et al.2018. Noncanonical translation via deadenylated 3' UTRs maintains primordial germ cells[J]. Nature Chemical Biology, 14(9): 844-852. [44] Knaut H, Werz C, Geisler R, et al.2003. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor[J]. Nature, 421(6920): 279-282. [45] Kobayashi S, Mogami M.1958. Effects of x-irrdiation upon rainbow trout (Salmo irideus): Ⅲ. Ovary growth in the stages of fry and fingerling[J]. Bull Fish Sci Hokkaido Univ, 9(2):89-94. [46] Köprunner M, Thisse C, Thisse B, et al.2001. A zebrafish nanos-related gene is essential for the development of primordial germ cells[J]. Genes & Development, 15(21): 2877-2885. [47] Levavi-Sivan B, Bogerd J, Mañanós E L, et al.2010. Perspectives on fish gonadotropins and their receptors[J]. General and Comparative Endocrinology, 165(3): 412-437. [48] Lin H J, Lee S H, Wu J L, et al.2013. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction[J]. Fish Physiology and Biochemistry, 39(6): 1525-1539. [49] Lu M, Zhang Q C, Zhu Z Y, et al.2023. An efficient approach to synthesize sterile allopolyploids through the combined reproduction mode of ameiotic oogenesis and sperm-egg fusion in the polyploid Carassius complex[J]. Science Bulletin, 68(10): 1038-1050. [50] Marvel M, Spicer O S, Wong T T, et al.2018. Knockout of the Gnrh genes in zebrafish: Effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides[J]. Biology of Reproduction, 99(3): 565-577. [51] Meng Z, Zhang B Y, Song C R, et al.2023. Optimal conditions for pressure shock induction of triploidy in turbot and a comparison of induction efficiency with cold shock[J]. Aquaculture Reports, 33: 101775. [52] Mcmillan S, D'attolico A, Saxena V, et al. 2024. Conditional caspase expression in zebrafish ovaries induces sterility[J]. Aquaculture Research, 2024: 7162078. [53] Mitchell K, Zhang W S, Lu C Y, et al.2020. Targeted mutation of secretogranin-2 disrupts sexual behavior and reproduction in zebrafish[J]. Proceedings of the National Academy of Sciences of the USA, 117(23): 12772-12783. [54] Muñoz-Cueto J A, Zmora N, Paullada-Salmerón J A, et al.2020. The gonadotropin-releasing hormones: Lessons from fish[J]. General and Comparative Endocrinology, 291: 113422. [55] Nagy A2000. Cre recombinase: The universal reagent for genome tailoring[J]. Genesis, 26(2): 99-109. [56] Ojolick E J, Cusack R, Benfey T J, et al.1995. Survival and growth of all-female diploid and triploid rainbow-trout (Oncorhynchus mykiss) reared at chronic high-temperature[J]. Aquaculture, 131(3-4): 177-187. [57] Ozerov M Y, Lumme J, Pakk P, et al.2010. High Gyrodactylus salaris infection rate in triploid Atlantic salmon Salmo salar[J]. Diseases of Aquatic Organisms, 91(12): 129-136. [58] Piva L H, De Siqueira-Silva D H, Goes C G, et al.2018. Triploid or hybrid tetra: Which is the ideal sterile host for surrogate technology?[J]. Theriogenology, 108: 239-244. [59] Qin Z K, Li Y, Su B F, et al.2016. Editing of the luteinizing hormone gene to sterilize channel catfish, using a modified zinc finger nuclease technology with electroporation[J]. Marine Biotechnology, 18(2): 255-263. [60] Scheerer P D, Thorgaard G H1983. Increased survival in salmonid hybrids by induced triploidy[J]. Canadian Journal of Fisheries and Aquatic Sciences, 40(11): 2040-2044. [61] Shi S C, Zhang Y Q, Huang J F, et al.2024. Effective "off-on" switch for fertility control in female zebrafish[J]. Frontiers in Marine Science, 11: 1381305. [62] Spicer O S, Wong T T, Zmora N, et al.2016. Targeted mutagenesis of the hypophysiotropic gnrh3 in zebrafish (Danio rerio) reveals no effects on reproductive performance[J]. PLOS ONE, 11(6): e0158141. [63] Staton A A, Knaut H, Giraldez A J2011. miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration[J]. Nature Genetics, 43(3): 204-245. [64] Takahashi A, Kanda S, Abe T, et al.2016. Evolution of the hypothalamic-pituitary-gonadal axis regulation in vertebrates revealed by knockout medaka[J]. Endocrinology, 157(10): 3994-4002. [65] Tao B B, Liao X Y, Chen L, et al.2022a. Germ cells are not essential for sexual dimorphism of gonads in common carp, C. carpio L.[J]. Aquaculture, 547: 737501. [66] Tao B B, Hu H L, Chen J, et al.2022b. Sinhcaf-dependent histone deacetylation is essential for primordial germ cell specification[J]. EMBO Reports, 23(6): e54387. [67] Taranger G L, Carrillo M, Schulz R W, et al.2010. Control of puberty in farmed fish[J]. General and Comparative Endocrinology, 165(3): 483-515. [68] Tavolga W N.1955. Effects of gonadectomy and hypophysectomy on prespawning behavior in males of the gobiid fish, Bathygobius soporator[J]. Journal Physiological Zoology, 28(3): 218-233. [69] Taylor J F, Sambraus F, Mota-Velasco J, et al.2013. Ploidy and family effects on Atlantic salmon growth, deformity and harvest quality during a full commercial production cycle[J]. Aquaculture, 410-411: 41-50. [70] Twohey M B, Heinrich J W, Seelye J G, et al.2003. The sterile-male-release technique in Great Lakes sea lamprey management[J]. Journal of Great Lakes Research, 29(Suppl. 1): 410-423. [71] Uzbekova S, Chyb J, Ferriére F, et al.2000. Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon[J]. Journal of Molecular Endocrinology, 25(3): 337-350. [72] Wang F, Feng Y Y, Wang X G, et al.2023. Production of all-male non-transgenic zebrafish by conditional primordial germ cell ablation[J]. Fish Physiology and Biochemistry, 49: 1215-1227. [73] Wargelius A, Leininger S, Skaftnesmo K O, et al.2016. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon[J]. Scientific Reports, 6: 21284. [74] Weidinger G, Stebler J, Slanchev K, et al.2003. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival[J]. Current Biology, 13(16): 1429-1434. [75] Wong T T, Collodi P2013. Inducible sterilization of zebrafish by disruption of primordial germ cell migration[J]. PLOS ONE, 8(6): e68455. [76] Wong T T, Zohar Y2015. Production of reproductively sterile fish by a non-transgenic gene silencing technology[J]. Scientific Reports, 5: 15822. [77] Xu L, Small J M, Hood S M, et al.2025. Morpholino oligomer delivery bath immersion for use in reverse genetic studies on the early development of eastern oysters (Crassostrea virginica)[J]. Aquaculture, 600 :742261. [78] Xu L, Zhao M L, Ryu J H, et al.2022. Reproductive sterility in aquaculture: A review of induction methods and an emerging approach with application to Pacific Northwest finfish species[J]. Reviews in Aquaculture, 15(1): 220-241. [79] Yamaji M, Jishage M, Meyer C, et al.2017. DND1 maintains germline stem cells via recruitment of the CCR4-NOT complex to target mRNAs[J]. Nature, 543(7646): 568-572. [80] Yamazaki F1976. Application of hormones in fish culture[J]. Journal of the Fisheries Research Board of Canada, 33(4): 948-958. [81] Yanagitsuru Y R, Hayman E S, Fairgrieve W T, et al.2025. Proof-of-concept for sterility induction in sablefish (Anoplopoma fimbria) via a scalable immersion-based gene silencing approach[J]. Aquaculture, 609: 742945. [82] Ye Z, Elaswad A, Qin G Y, et al.2025. Sterilization of channel catfish via overexpression of gene regulated by a tet-off system in the primordial germ cells[J]. Marine Biotechnology, 27(3): 79. [83] Yoshikawa H, Ino Y, Kishimoto K, et al.2025. Efficient production of donor-derived tiger puffer gametes from grass puffer recipient with germ cell deficiency by CRISPR-Cas9 mediated knockout of dead end 1[J]. Aquaculture, 595(2): 741626. [84] Yoshikawa H, Xu D, Ino Y, et al.2018. Hybrid sterility in fish caused by mitotic arrest of primordial germ cells[J]. Genetics, 209(2): 507-521. [85] Yoshizaki G, Takashiba K, Shimamori S, et al.2016. Production of germ cell-deficient salmonids by gene knockdown, and their use as recipients for germ cell transplantation[J]. Molecular Reproduction and Development, 83(4): 298-311. [86] Yu F, Xiao J, Liang X Y, et al.2011. Rapid growth and sterility of growth hormone gene transgenic triploid carp[J]. Chinese Science Bulletin, 56(16): 1679-1684. [87] Zhang Y S, Chen J, Cui X J, et al.2015a. A controllable on-off strategy for the reproductive containment of fish[J]. Scientific Reports, 5: 7614. [88] Zhang Y W, Pan X F, Yin Y H, et al.2021. Fertilization and growth performance in reciprocal hybrids of Dianchi golden-line barbel (Sinocyclocheilus grahami) and domestic common carp (Cyprinus carpio) and crucian carp (Carassius auratus)[J]. Aquaculture Reports, 21: 100893. [89] Zhang Z, Chen J, Li L, et al.2014. Research advances in animal distant hybridization[J]. Science China-Life Sciences, 57(9): 889-902. [90] Zhang Z W, Zhu B, Ge W2015b. Genetic analysis of zebrafish gonadotropin (fsh and lh) functions by TALEN-mediated gene disruption[J]. Molecular Endocrinology, 29(1): 76-98. [91] Zhou L, Fang Y Y, Wang F, et al.2018. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development[J]. Scientific Reports, 8(1): 1834. [92] Zohar Y, Muñoz-Cueto J A, Elizur A, et al.2010. Neuroendocrinology of reproduction in teleost fish[J]. General and Comparative Endocrinology, 165(3): 438-455.