|
|
Protective Mechanism of Quercetin Against LPS-induced Inflammation in Mouse (Mus musculus) Mammary Epithelial Cells |
CAO Lu1,2, WANG Tao1,2, CHEN Yan1,2, LU Ting1,2, CHENG Xiao-Li1,2, YAO Dan1,2, ZHAO Xing-Xu1,2, ZHANG Yong1,2* |
1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Provincial Key Laboratory of Animal Reproductive Physiology and Reproduction Regulation, Lanzhou 730070, China |
|
|
Abstract Quercetin (QUE), an ingredient of traditional Chinese medicine, is a flavonoid compound with anti-inflammatory and antioxidant effects. This study aimed to investigate the protective mechanism of QUE against lipopolysaccharide (LPS)-induced inflammatory damage in mouse (Mus musculus) mammary epithelial cells (MMECs), and provide a theoretical basis for the treatment of clinical mastitis in dairy cows (Bos taurus). First, the optimal inflammatory concentration of LPS, the optimal dose of drug QUE and LPS+QUE were successfully screened by the Cell Counting Kit-8 (CCK-8) in an in vitro experiment. After that, LPS was used to induce inflammation, and MMECs were divided into control, model (10 μg/mL LPS), LPS+QUE high dose (125 μg/mL), LPS+QUE medium dose (62.5 μg/mL), and LPS+QUE low dose (31.25 μg/mL) groups. The growth status of MMECs was observed by morphology, MMECs were identified by immunofluorescence, and the relative expression of inflammatory-related factors were measured by qRT-PCR and Western blot. The results showed the existence of specific protein CK-18 in the cells which proved that the cells were MMECs; after 12 h of cell inflammation induced by 10 μg/mL LPS, the gene expression of inflammatory-related factors TNFα and IL6 were significantly higher than that of the blank control (P<0.01), proving successful induction of inflammation in MMECs; After QUE acted on MMECs, qRT-PCR and Western blot showed that inflammatory- related factors TNFα, IL6, NF-κB, and AKT gene and protein expression were down-regulated and appeared to be dosage dependent. Therefore, QUE might ameliorate LPS-induced mastitis in mice by inhibiting the PI3K-AKT/NF- κB signaling pathway, thereby reducing the expression of downstream inflammatory factors TNFα and IL6, and exerting anti-inflammatory effects. This study provides basic materials for the treatment of clinical mastitis in cows and the development of potential anti-inflammatory drugs.
|
Received: 24 July 2022
|
Corresponding Authors:
*zhychy@163.com
|
|
|
|
[1] 陈金玉, 刘单阳, 赵勇, 等. 2021. 植物活性成分协同抗生素消减细菌耐药性的研究进展[J]. 天然产物研究与开发 , 33(06): 1063-1071. (Chen J Y, Liu D Y, Zhao Y, et al. 2021. Advances in the research of plant active ingredients synergistic antibiotics to abate bacterial resistance[J]. Natural Products Research and Development, 33(06): 1063-1071. ) [2] 陈毅刚, 尹波, 罗本燕. 2012. Akt 信号通路与细胞存活的研究进展[J]. 国际神经病学神经外科学杂志 , 39(04):362-365. (Chen Y G, Yin B, Luo B Y. 2012. Advances in the study of Akt signaling pathway and cell survival[J]. International Journal of Neurology Neurosurgery, 39(04): 362-365. ) [3] 黄秀兰, 崔国辉, 周克元. 2008. PI3K-Akt 信号通路与肿瘤细胞凋亡关系的研究进展[J]. 癌症, 2008(03): 331-336. (Huang X L, Cui G H, Zhou K Y. 2008. Advances in the relationship between PI3K-Akt signaling pathway and tumor cell apoptosis[J]. Cancer, 2008(03): 331-336. ) [4] 贾军峰, 王梦竹, 崔一喆, 等. 2018. 脂多糖致炎时间对小鼠血液免疫与肠道组织形态的影响[J]. 动物营养学报,30(09): 3609-3616. (Jia J F, Wang M Z, Cui Y Z, et al. 2018. Effect of lipopolysaccharide inflammation time on blood immunity and intestinal histomorphology in mice[J]. Journal of Animal Nutrition, 30(09): 3609-3616. ) [5] 吕威. 2016. 原代奶牛乳腺上皮细胞的分离、培养和传代的技术研究[D]. 硕士学位论文, 东北农业大学, 导师: 高学军 , pp. 1-52. (Lv W. 2016. Technical study on isolation, culture and passaging of primary dairy mammary epithelial cells[D]. Thesis for M. S. , Northeast Agriculture University, Supervisor: Gao X J, pp. 1-52. ) [6] 牟瑞营. 2017. 植物乳杆菌对奶牛乳腺炎的预防作用的研究[D]. 博士学位论文 , 吉林大学 , 导师 : 张乃生 , pp. 1-106. (Mou R Y. 2017. Study on the preventive effect of Lactobacillus plantarum on mastitis in dairy cows[D]. Thesis for Ph. D. , Jilin University, Supervisor: Zhang N S, pp. 1-106. ) [7] 倪春霞, 蒲万霞, 胡永浩, 等. 2010. 奶牛乳房炎病原菌的分离鉴定及耐药性分析[J]. 西北农业学报 , 19(02): 20-24. (Ni C X, Pu W X, Hu Y H, et al. 2010. Isolation and identification of pathogenic bacteria of mastitis in dairy cattle and analysis of drug resistance[J]. Northwest Journal of Agriculture, 19(02): 20-24. ) [8] 任婷婷, 张东君, 朱丽萍, 等. 2016. 葛根素对奶牛乳腺上皮细胞炎症模型中 NF-κB 信号通路的影响[J]. 农业生物技术学报, 24(01): 44-51. (Ren T T, Zhang D J, Zhu L P, et al. 2016. Effect of puerarin on NF-κB signaling pathway in inflammation model of bovine (Bos taurus) mammary epithelial cells[J]. Journal of Agricultural Biotechnology, 24(01): 44-51. ) [9] 王桃, 曹璐, 米晓钰, 等. 2022. 基于肿瘤坏死因子信号通路探讨槲皮素对小鼠乳腺炎模型的作用机制[J]. 动物营养学报 , 34(6): 3972~3982. (Wang T, Cao L, Mi X Y. 2022. Exploring the mechanism of action of quercetin on mouse mastitis model based on tumor necrosis factor signaling pathway[J]. Journal of Animal Nutrition, 34(6): 3972~3982. ) [10] 王婷婷, 冷承浩, 郭昆鹏, 等. 2019. 槲皮素对小鼠金黄色葡萄球菌肺炎的防治作用及 IKK/NF-κB/IκB 信号通路机制研究[J]. 中药药理与临床, 35(04): 53-57. (Wang T T, Len C H, Guo K P, et al. 2019. Prevention and treatment of Staphylococcus aureus pneumonia in mice by quercetin and study of IKK/NF- κB/IκB signaling pathway mechanism[J]. Chinese Pharmacology and Clinical,35(04): 53-57. ) [11] 谢雪艳, 魏玉好, 李天珍, 等. 2018. 连翘苷对脂多糖介导乳腺上皮细胞分泌炎性因子的影响[J]. 中南药学 , 16(10): 1379-1383. (Xie X Y, Wei Y H, Li T Z, et al. 2018. Effect of forsythia glycosides on lipopolysaccharide-mediated secretion of inflammatory factors by mammary epithelial cells[J]. Central South Pharmacy, 16(10):1379-1383. ) [12] 易琼, 张毅, 李圆方, 等. 2011. 小鼠乳腺上皮细胞的体外培养[J]. 山东农业生物学报, 30(05): 425-428, 433. (Yi Q, Zhang y, Li Y F, et al. 2011. In vitro culture of mouse mammary epithelial cells[J]. Shandong Journal of Agricultural Biology, 30(05): 425-428, 433. ) [13] 赵慧朵, 程旭锋, 楚爱景. 2017. 栀子苷对乳腺炎小鼠乳腺组织及乳腺上皮细胞中 IL-6,TNF-α 和 IL-1β 表达的影响[J]. 中国老年学杂志 , 37(19): 4712-4714. (Zhao H D, Cheng X F, Chu A J. 2017. Effect of gardenia glycosides on the expression of IL-6, TNF-α and IL-1β in mammary tissue and mammary epithelial cells of mastitis mice[J]. Chinese Journal of Gerontology, 37(19): 4712-4714. ) [14] 赵学芹, 黄宪章. 2009. Akt/PKB 信号通路调控机制的研究进展[J]. 广东医学 , 30(12): 1920-1922. (Zhao X Q, Huang X Z. 2009. Advances in the regulatory mechanism of Akt/PKB signaling pathway[J]. Guangdong Medicine, 30(12): 1920-1922. ) [15] 周霄楠, 韩超, 宋鹏琰, 等. 2017. 木犀草素和槲皮素体外抗炎作用研究[J]. 动物医学进展, 38(10): 56-61. (Zhou X N, Han C, Song P Y, et al. 2017. In vitro anti-inflamma‐tory effects of lignocaine and quercetin[J]. Advances in Animal Medicine, 38(10): 56-61. ) [16] Anand David A V, Arulmoli R, Parasuraman S. 2016. Overviews of biological importance of quercetin: A bioactive flavonoid[J]. Pharmacognosy Reviews, 10(20): 84-89. [17] Batra R, Suh M K, Carson J S, et al. 2018. IL-1β (interleukin-1β) and TNF-α (tumor necrosis factor-α) impact abdominal aortic aneurysm formation by differential effects on macrophage polarization[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(2): 457-463. [18] Brouillette E, Malouin F. 2005. The pathogenesis and control of Staphylococcus aureus-induced mastitis: Study models in the mouse[J]. Microbes and infection, 7(3): 560-568. Cheng X Y, Li J L. 2015. Biological activity of cytotoxic dendritic cells cocultured with cytokine-induced killer cells and their effect on acute leukemia cells[J]. Genetics and Molecular Research, 14(4): 13208-13214. [19] Chuammitri P, Amphaiphan C, Nojit P. 2015. In vitro modulatory effects of quercetin on bovine neutrophil effector functions[J]. Journal Veterinary Medicine, 45(4): 63-72. [20] Deepika, Maurya P K. 2022. Health benefits of quercetin in age-related diseases[J]. Molecules, 27(8): 2498. [21] Durand J K, Baldwin A S. 2017. Targeting IKK and NF- κB for therapy[J]. Advances in Protein Chemistry and Structural Biology, 107: 77-115. [22] Gbylik-Sikorska M, Gajda A, Burmańczuk A, et al. 2019. Development of a UHPLC-MS/MS method for the determination of quercetin in milk and its application to a pharmacokinetic study[J]. Journal of Veterinary Research, 63(1): 87-91. [23] Gonen E. 2007. Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis[J]. Cell Microbiology, 9(12): 2826-2838. [24] Günther J, Koy M, Berthold A, et al. 2016. Comparison of the pathogen species-specific immune response in udder derived cell types and their models[J]. Veterinary Research, 47: 22. [25] Hendriksen R S, Mevius D J, Schroeter A, et al. 2008. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004[J]. Acta Veterinaria Scandinavica, 50(1): 28. [26] Islam M T, Ali E S, Uddin S J, et al. 2018. Phytol: A review of biomedical activities[J]. Food and Chemical Toxicology, 121: 82-94. [27] Kalińska A, Jaworski S, Wierzbicki M, et al. 2019. Silver and copper nanoparticles-an alternative in future mastitis treatment and prevention?[J]. International Journal of Molecular Sciences, 20(7): 1672. [28] Lokesh K N, Channarayappa, Venkataranganna M, et al. 2018. Augmentation of antioxidant and iron ( Ⅲ) chelation properties of tertiary mixture of bioactive ligands[J]. Journal of Trace Elements in Medicine and Biology, 45: 114-124. [29] Mantovani A, Cassatella M A, Costantini C, et al. 2011. Neutrophils in the activation and regulation of innate and adaptive immunity[J]. Nature Reviews. Immunology, 11(8): 519-531. [30] Maurya A K, Vinayak M. 2017. Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma[J]. Nutrition and Cancer, 69(3): 470-480. [31] Moll R, Franke W W, Schiller D L, et al. 1982. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells[J]. Cell, 31(1): 11-24. Nikfarjam B A, Hajiali F, Adineh M, et al. 2017. Anti-inflam‐matory effects of quercetin and vitexin on activated human peripheral blood neutrophils: The effects of quercetin and vitexin on human neutrophils[J]. Journal of Pharmacopuncture, 20(2): 127-131. [32] Oliver S P, Murinda S E. 2012. Antimicrobial resistance of mastitis pathogens[J]. Food Animal Practice, 28(2): 165-185. [33] Osonga F J, Akgul A, Miller R M, et al. 2019. Antimicrobial activity of a new class of phosphorylated and modified flavonoids[J]. ACS Omega, 4(7): 12865-12871. [34] Rossol M, Heine H, Meusch U, et al. 2011. LPS-induced cytokine production in human monocytes and macrophages[J]. Critical Reviews in Immunology, 31(5): 379-446. [35] Seegers H, Fourichon C, Beaudeau F. 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds[J]. Veterinary Research, 34(5): 475-491. [36] Shrestha A, Bhattarai R K, Luitel H, et al. 2021. Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal[J]. BMC Veterinary Research, 17(1): 239. [37] Srikok S, Nambut S, Wongsawan K, Chuammitri P. 2017. Quercetin promotes the expression of genes involved in phagocytosisinbovine neutrophils[J]. Veterinary Science, 12: 85-95. [38] Srivastava R M, Singh S, Dubey S K, et al. 2011. Immunomodulatory and therapeutic activity of curcumin[J]. International Immunopharmacology, 11(3): 331-341. [39] Srivastava N S, Srivastava R A K. 2019. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β catenin signaling and apoptotic pathways in A375 cells[J]. International Journal of Phytotherapy and Phytopharmacology, 52: 117-128. [40] Sul O J, Ra S W. 2021. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ ROS/NF-kB in lung epithelial cells[J]. Molecules, 26(22): 6949. [41] Zou Y, Wei H K, Xiang Q H, et al. 2016. Protective effect of quercetin on pig intestinal integrity after transport stress is associated with regulation oxidative status and inflammation[J]. Journal of Veterinary Medical Science, 78(9): 1487-1494. |
|
|
|