|
|
Advances on Genetic Resistance of Chicken (Gallus gallus) to Salmonella Infection |
HU Geng, LI Xian-Yao* |
College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China |
|
|
Abstract Salmonellosis is a common disease in poultry, which is mainly caused by multiple Salmonella serotypes. It can be transmitted to human through fresh or undercooked meat, eggs and milk. The immune response and genetic resistance of chicken (Gallus gallus) to Salmonella has been studied through different animal infection models. High-throughput approaches will further accelerate the study of mechanism of genetic resistance to Salmonella. Here, the factors affecting the animal infection model, the basic research methods and the mechanism of chicken genetic resistance to Salmonella infection were reviewed. With the appearance of more resistance genes and finer genome map, it is expected to select out resistant breeds, and reduce the spreading of Salmonella in poultry and human.
|
Received: 02 July 2020
Published: 01 February 2021
|
|
Corresponding Authors:
* xyli@sdau.edu.cn
|
|
|
|
[1] 曹雪涛. 2018. 医学免疫学[M]. 第7版, 北京: 人民卫生出版社, pp.5. (Cao X T.2018. Medical Immunology[M]. No.7, People's Medical Publishing House, Beijing, China, pp.5) [2] 陈铖. 2016. 肠炎沙门氏菌不同感染途径对雏鸡的致病性及其对药物敏感性实验[D]. 硕士学位论文, 福建农林大学, 导师: 马玉芳, pp.1. (Chen C.2016. Pathogenicity and drug sensitivity test of Salmonella enteritidis infection by different way in chickens[D]. Thesis for M.S., Fujian Agriculture and Forestry University, Supervisor: Ma Y F, pp.1.) [3] 黄海波. 2018. 鼠伤寒沙门氏菌LPS诱导雏鸡胸腺损伤机制的转录组学研究[D]. 博士学位论文, 华中农业大学, 导师: 彭克美, pp.2-3. (Huang H B.2018. Transcriptomic study on the mechanism of thymus injury induced by Salmonella lipopolysaccharide in chicks[D]. Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Peng K M, pp. 2-3.) [4] 王娟, 郑增忍, 王玉东, 等. 2010. 市售禽肉产品中沙门氏菌污染状况调查[J]. 中国动物检疫, 27(7): 50-51. (Wang J, Zheng Z R, Wang Y D, et al.2010. Investigation of Salmonella contamination in poultry products[J]. China Animal Health Inspection, 27(7): 50-51.) [5] Ahmed W.2020. RNA-seq resolving host-pathogen interactions: advances and applications[J]. Ecological Genetics and Genomics, 15: 1-6. [6] Beal R K, Powers C, Davison T F, et al.2006. Clearance of enteric Salmonella enterica serovar Typhimurium in chickens is independent of B-cell function[J]. Infection and Immunity, 74(2): 1442-1444. [7] Beal R K, Wigley P, Powers C, et al.2004. Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge[J]. Veterinary Immunology and Immunopathology 100(3-4): 151-164. [8] Bumstead N, Barrow P.1993. Resistance to Salmonella gallinarum, S. pullorum, and S. enteritidis in inbred lines of chickens[J]. Avian Diseases, 37(1):189-193. PMID: 8452495. [9] Calenge F, Kaiser P, Vignal A, et al.2010. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: A review[J]. Genetics, Selection, Evolution: GSE, 42(1): 11. [10] Coble D J, Sandford E E, Ji T, et al.2013. Impacts of Salmonella enteritidis infection on liver transcriptome in broilers[J]. Genesis, 51(5): 357-364. [11] Colgan A M, Cameron A D, Kröger C.2017. If it transcribes, we can sequence it: Mining the complexities of host-pathogen-environment interactions using RNA-seq[J]. Current Opinion in Microbiology, 36: 37-46. [12] Creecy J P, Conway T.2015. Quantitative bacterial transcriptomics with RNA-seq[J]. Current opinion in microbiology, 23: 133-140. [13] Fife M S, Howell J S, Salmon N, et al.2011. Genome-wide SNP analysis identifies major QTL for Salmonella colonization in the chicken[J]. Animal genetics, 42(2):134-140. [14] Fife M S, Salmon N, Hocking P M, et al.2009. Fine mapping of the chicken salmonellosis resistance locus (SAL1)[J]. Animal genetics, 40(6): 871-877. [15] Gast R K, Guard-Petter J, Holt P S.2002. Characteristics of Salmonella enteritidis contamination in eggs after oral, aerosol, and intravenous inoculation of laying hens[J]. Avian Diseases, 46(3): 629-635. [16] Gast R K, Holt P S.1998. Persistence of Salmonella enteritidis from one day of age until maturity in experimentally infected layer chickens[J]. Poultry Science, 77(12): 1759-1762. [17] Girard-Santosuosso O, Bumstead N, Lantier I, et al.1997. Partial conservation of the mammalian NRAMP1 syntenic group on chicken chromosome 7[J]. Mammalian Genome, 8(8): 614-616. [18] Gottesman S, Storz G.2011. Bacterial small RNA regulators: Versatile roles and rapidly evolving variations[J]. Cold Spring Harbor Perspectives in Biology, 3(12): a003798. [19] Hasenstein J R, Lamont S J.2007. Chicken gallinacin gene cluster associated with Salmonella response in advanced intercross line[J]. Avian Diseases, 51(2): 561-567. [20] Hu J, Bumstead N, Barrow P, et al.1997. Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC[J]. Genome Research, 7(7): 693-704. [21] Huang K, Herrero-Fresno A, Thøfner I, et al.2019. Interaction differences of the Avian Host-Specific Salmonella enterica serovar Gallinarum, the Host-Generalist S. Typhimurium, and the Cattle Host-Adapted S. Dublin with chicken primary macrophage[J]. Infection and Immunity, 87(12): e00552-19. [22] International Chicken Genome Sequencing Consortium.2004a. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution[J]. Nature, 432(7018): 695-716. [23] International Chicken Genome Sequencing Consortium.2004b. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms[J]. Nature, 432(7018): 717-722. [24] Jackson B R, Griffin P M, Cole D, et al.2013. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008[J]. Emerging infectious diseases, 19(8): 1239-1244. [25] Jiang X, Chen Z J.2011. The role of ubiquitylation in immune defence and pathogen evasion[J]. Nature reviews. Immunology, 12(1): 35-48. [26] Knodler L A, Elfenbein J R.2019. Salmonella enterica[J]. Trends in Microbiology, 27(11):964-965. [27] Kogut M H, Arsenault R J.2015. A role for the non-canonical wnt-β-catenin and TGF-β signaling pathways in the induction of tolerance during the establishment of a Salmonella enterica serovar enteritidis persistent cecal infection in chickens[J]. Frontiers in Veterinary Science, 2: 33. [28] Kogut M H, Arsenault R J.2017. Immunometabolic phenotype alterations associated with the induction of disease tolerance and persistent asymptomatic infection of Salmonella in the chicken intestine[J]. Frontiers in Immunology, 8: 372. [29] Kum W W, Lo B C, Yu H B, et al.2011. Protective role of Akt2 in Salmonella enterica serovar typhimurium-induced gastroenterocolitis[J]. Infection and Immunity, 79(7): 2554-2566. [30] Leveque G, Forgetta V, Morroll S, et al.2003. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens[J]. Infection and Immunity, 71(3): 1116-1124. [31] Li P, Fan W, Everaert N, et al.2018. Messenger RNA sequencing and pathway analysis provide novel insights into the susceptibility to Salmonella enteritidis Infection in chickens[J]. Frontiers in Genetics, 9: 256. [32] Li P, Fan W, Li Q, et al.2017a. Splenic microRNA expression profiles and integration analyses involved in host responses to Salmonella enteritidis infection in chickens[J]. Frontiers in Cellular and Infection Microbiology, 7:377. [33] Li P, Wang H, Zhao X, et al.2017b. Allelic variation in TLR4 is linked to resistance to Salmonella Enteritidis infection in chickens[J]. Poultry science, 96(7): 2040-2048. [34] Liu B H, Cai J P.2017. Identification of transcriptional modules and key genes in chickens infected with Salmonella enterica serovar pullorum using integrated coexpression analyses[J]. BioMed Research International, 2017:8347085. [35] Liu L, Lin L, Zheng L, et al.2018. Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken[J]. Gut Pathogens, 10: 34. [36] Ma T, Xu L, Wang H, et al.2017. Identification of the crucial genes in the elimination and survival process of Salmonella enterica ser. Pullorum in the chicken spleen[J]. Animal genetics, 48(3): 303-314. [37] Madrid LV, Wang C Y, Guttridge D C, et al.2000. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB[J]. Molecular and Cellular Biology, 20(5): 1626-1638. [38] Mariani P, Barrow P A, Cheng H H, et al.2001. Localization to chicken chromosome 5 of a novel locus determining salmonellosis resistance[J]. Immunogenetics, 53(9): 786-791. [39] Matulova M, Havlickova H, Sisak F, et al.2012a. Vaccination of chickens with Salmonella Pathogenicity Island (SPI) 1 and SPI2 defective mutants of Salmonella enterica serovar Enteritidis. Vaccine, 30(12): 2090-2097. [40] Matulova M, Rajova J, Vlasatikova L, et al.2012b. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis[J]. PLoS One, 7(10): e48101. [41] Matulova M, Stepanova H, Sisak F, et al.2012c. Cytokine signaling in splenic leukocytes from vaccinated and non-vaccinated chickens after intravenous infection with Salmonella enteritidis[J]. PLoS One, 7(2): e32346. [42] Matulova M, Varmuzova K, Sisak F, et al.2013. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis[J]. Veterinary Research, 44(1): 37. [43] Michailidis G, Avdi M, Argiriou A.2012. Transcriptional profiling of antimicrobial peptides avian β-defensins in the chicken ovary during sexual maturation and in response to Salmonella enteritidis infection[J]. Research in Veterinary science, 92(1): 60-65. [44] Miyamoto T, Baba E, Tanaka T, et al.1997. Salmonella enteritidis contamination of eggs from hens inoculated by vaginal, cloacal, and intravenous routes[J]. Avian diseases, 41(2): 296-303. [45] Muir W M, Wong G K, Zhang Y, et al.2008. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds[J]. Proceedings of the National Academy of Sciences of the USA, 105(45): 17312-17317. [46] Müller J, Spriewald S, Stecher B, et al.2019. Evolutionary stability of Salmonella competition with the gut microbiota: how the environment fosters heterogeneity in exploitative and interference competition[J]. Journal of Molecular Biology, 431(23):4732-4748. [47] Papalexi E, Satija R.2018. Single-cell RNA sequencing to explore immune cell heterogeneity[J]. Nature Reviews. Immunology, 18(1): 35-45. [48] Pieper J, Methner U, Berndt A.2011. Characterization of avian γδ T-cell subsets after Salmonella enterica serovar Typhimurium infection of chicks[J]. Infection and Immunity, 79(2): 822-829. [49] Raffatellu M, George M D, Akiyama Y, et al.2009. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine[J]. Cell Host & Microbe, 5: 476-486. [50] Redmond S B, Chuammitri P, Andreasen C B, et al.2009. Chicken heterophils from commercially selected and non-selected genetic lines express cytokines differently after in vitro exposure to Salmonella enteritidis[J]. Veterinary Immunology and Immunopathology, 132(2-4): 129-134. [51] Redmond S B, Chuammitri P, Andreasen C B, et al.2011. Genetic control of chicken heterophil function in advanced intercross lines: Associations with novel and with known Salmonella resistance loci and a likely mechanism for cell death in extracellular trap production[J]. Immunogenetics, 63(7): 449-458. [52] Ricke S, Gast R K.2016. Producing Safe Eggs: Microbial Ecology of Salmonella[M]. Elsevier, 187-208. [53] Schokker D, Peters T H, Hoekman A J, et al.2012. Differences in the early response of hatchlings of different chicken breeding lines to Salmonella enterica serovar Enteritidis infection[J]. Poultry Science, 91(2): 346-353. [54] Sekelova Z, Stepanova H, Polansky O, et al.2017. Differential protein expression in chicken macrophages and heterophils in vivo following infection with Salmonella Enteritidis[J]. Veterinary research, 48(1): 35. [55] Shanmugasundaram R, Kogut M H, Arsenault R J, et al.2015. Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens[J]. Poultry Science, 94(8):1828-1835. [56] Stecher B, Hardt W D.2011. Mechanisms controlling pathogen colonization of the gut[J]. Current Opinion in Microbiology, 14(1):82-91. [57] Tohidi, Idris, Panandam, Hair-Bejo.2014. Early immune gene expression responses to Salmonella enteritidis infection in indigenous chickens[J]. Journal of Applied Animal Research, 42(2): 204-207. [58] Waters LS, Storz G.2009. Regulatory RNAs in bacteria[J]. Cell, 136(4): 615-628. [59] Wigley P, Hulme S, Rothwell L, et al.2006. Macrophages isolated from chickens genetically resistant or susceptible to systemic salmonellosis show magnitudinal and temporal differential expression of cytokines and chemokines following Salmonella enterica challenge[J]. Infection and Immunity, 74(2): 1425-1430. [60] Wigley P.2004. Genetic resistance to Salmonella infection in domestic animals[J]. Research in Veterinary Science, 76(3): 165-169. [61] Wu G, Liu L, Qi Y, et al.2015. Splenic gene expression profiling in White Leghorn layer inoculated with the Salmonella enterica serovar Enteritidis[J]. Animal Genetics, 46(6): 617-626. [62] Zheng L, Liu L, Lin L, et al.2019. Cecal circRNAs are associated with the response to Salmonella enterica serovar enteritidis inoculation in the chicken[J]. Frontiers in Immunology, 10: 1186. [63] Zhou H, Lamont S J.2007. Global gene expression profile after Salmonella enterica serovar Enteritidis challenge in two F8 advanced intercross chicken lines[J]. Cytogenetic and Genome Research, 117(1-4): 131-138. |
|
|
|