|
|
Analysis on the Development Trend and Competitive Situation of Plant Gene Editing Technology Based on Patent Information |
ZOU Wan-Nong, SONG Min* |
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081; China |
|
|
Abstract Gene editing is a new genetic engineering technology that modify the specific target genes of organism genomes. It has been widely used to edit plant genomes accurately at present to obtain excellent crop varieties. This paper attempts to mine and analyze patent data related to the global plant gene editing technology. On the basis of sorting out the development path of gene editing technology, the focus was on analyzing the development trend and competition situation from the perspective of the main patent layout areas and rights holders, R&D (Research & Development) and industrialization. The analysis found that China's plant gene editing technology patent lacked global patent deployment, and the overall quality and economic value of the patent were relatively low. The final achievements still remained in model crop creation, lack of industrialization mechanism based on intellectual property cooperation. Finally, countermeasures and suggestions were proposed such as strengthening the original innovation of editing system, strengthening the intellectual property layout of the global and whole industrial chain, and promoting intellectual property cooperation to make up for shortcomings.
|
Received: 31 October 2019
|
|
Corresponding Authors:
*, songmin@caas.cn
|
|
|
|
[1] 范月蕾, 王慧媛, 王恒哲, 等. 2018. 国内外CRISPR/Cas9基因编辑专利技术发展分析[J]. 生命科学, 30(09): 1010-1018. (Fan Y L, Wang H Y, Wang H Z, et al.2018. Patent analysis on the development of domestic and foreign gene editing technologies[J]. Chinese Bulletin of Life Sciences, 30(09): 1010-1018.) [2] 国际农业生物技术应用服务组织. 2016. 2015年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 36(04):1-11. (ISAAA.2016. Global biotechnology/GM crop commercialization development trend in 2015[J]. China Biotechnology, 36(04): 1-11.) [3] 康国章, 李鸽子, 许海霞. 2017. 我国作物转基因技术的发展与现状[J]. 现代农业科技, (22): 27-29. (Kang G Z, Li G Z, Xu H X.2017. Debelopment and status of transgenic technology in China[J]. Modern Agricultural Science and Technology,(22): 27-29). [4] 秦瑞英, 殷三, 李娟, 等. 2019. 基因组编辑技术在作物育种中的应用及监管现状[J]. 中国农学通报, 35(06): 96-100. (Qin R Y, Yin S, Li J, et al.2019. Application and regulatory status of genome editing technology in crop breeding[J]. Chinese Agricultural Science Bulletin, 35(06): 96-100.) [5] 任静, 邹婉侬, 宋敏. 2019. 跨国种业公司并购形成的国际种业竞争新格局变化趋势研究——以知识产权为例[J]. 中国生物工程杂志, 39(07): 108-117. (Ren J, Zou W N, Song M.2019. Study on the change trend of the new international seed industry competition pattern formed by M&A of multinational seed industry companies—Taking intellectual property as an example[J]. 2019. China Biotechnology, 39(07): 108-117.) [6] 王福军, 赵开军. 2018. 基因组编辑技术应用于作物遗传改良的进展与挑战[J]. 中国农业科学, 51(01): 1-16. (Wang F J, Zhao K J.2018. Progress and challenge of crop genetic improvement via genome editing[J]. Scientia Agricultura Sinica. 51(01): 1-16.) [7] Bonas U, Stall R E, Staskawicz B.1989. Genetic and structural characterization of the avirulence gene avr Bs3 from Xanthomonas campestris pv.vesicatoria[J]. Molecular Genetics and Genomics, 218(1): 127-136. [8] Capecchi M R.1989. Altering the genome by homologous recombination[J]. Science, 244(4910): 1288-1292. [9] Christian M, Cermak T, Doyle E L, et al.2010. Targeting DNA double-strand breaks with TAL effector nuclease[J]. Genetics, 1869(2): 757-761. [10] Cong L, Ran F A, Cox D, et al.2013. Multiplex genome engineering using Crispr/Cas systems[J]. Science, 339(6121): 819-823. [11] Jinek M, Chylinski K, Fonfara I.2012. A programmable dual-RNA-guided dna endonuclease in adaptive bacterialimmunity[J]. Science, 337(6096): 816-821. [12] Kim Y G, Cha J, Chandrasegarans S.1996. Hybrid restrietion en-zymes:Zinc finger fusions to Fok1 cleavage domain[J]. Proceedings of the National Academy of Sciences of the USA, 93: 1156-1160. [13] Lee M S, Gippert G P, Soman K V, et al.1989. Three-dimensional solution structure of a single zinc finger DNA-binding domain[J]. Science, 245(4918): 635-637. [14] Scherer S, Davis R W.1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro[J]. Proceedings of the National Academy of Sciences of the USA, 76(10): 4951-4955. [15] Thomas K R, Folger K R, Capecchi M R.1986. High frequency targeting of genes to specific sites in the mammalian genome[J]. Cell, 44(3): 419-428. [16] Wood A J, Lo T W, Zeitler B, et al.2011. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 333(6040): 307. [17] Zhang Y, Karen M, Godwin I D, et al.2018. Applications and potential of genome editing in crop improvement.[J]. Genome Biology, 19(1): 210. |
|
|
|