|
|
Functional Analysis of Ramie (Boehmeria nivea) BnPCS1 in Response to Heavy Metal Cadmium Stress |
ZHANG Lei, QUAN Rui-Ping, CHEN Jian-Fu, XU Ming-Zhi, CUI Guo-Xian*, SHE Wei* |
College of Agronomy/Institute of Ramie, Hunan Agricultural University, Changsha 410128, China |
|
|
Abstract Phytochelatin synthase (PCS) is a protease-like enzyme that catalyzes glutathione (GSH) to form phytochelatins (PCs), and plays an important role in detoxification of heavy metals in plants. The heavy metal detoxification function of plant PCS varies according to crops varieties and doses of heavy metals. In order to study the molecular mechanism of ramie (Boehmeria nivea) PCS response to heavy metal cadmium (Cd), the p426 GDP-BnPCS1 yeast (Saccharomyces cerevisiae) expression vector was converted into wild-type and cadmium-sensitive yeast respectively, and the results showed that transgenic yeast appeared stronger cadmium tolerance under 50~100 μmol/L Cd2+ stress. In addition, BnPCS1 was overexpressed in Arabidopsis thaliana, the root length and biomass of Arabidopsis thaliana were significantly higher than those of the wild type under 100 μmol/L Cd2+ stress, and the antioxidant capacity, GSH and PCs content of Arabidopsis thaliana under cadmium stress were significantly enhanced, as well as transcription levels of AtPCS1, γ-glutamate cysteine ligase 1 (AtGCL1), glutamate synthase 1 (AtGS1), heavy metal ATPase 1 (AtHMA1) and ATP-binding cassette transporter 1 (AtATM1). The above results show that ramie BnPCS1 can actively respond to cadmium stress and enhance cadmium tolerance. The study provides a reference for ramie-tolerant molecular breeding.
|
Received: 13 October 2022
|
|
Corresponding Authors:
* weishe@hunau.edu.cn; gx-cui@163.com
|
|
|
|
[1] 姜瑛楠, 冯保民, 张海燕, 等. 2005. 大蒜植物络合素合酶基因转化对酵母重金属抗性的提高(英文)[J]. 植物生态学报, (04): 659-664. (Jiang Y N, Feng B M, Zhang H Y, et al. 2005. Improving heavy metal tolerance of yeast by transferring a phytochelatin synthase gene from garlic[J]. Chinese Journal of Plant Ecology, (04): 659-664.) [2] 齐君, 吕金印, 李鹰翔, 等. 2012. Cr3+胁迫对青菜中植物络合素含量及AsA-GSH代谢关键酶活性的影响[J]. 农业环境科学学报, 31(07): 1303-1309. (Qi J, LV J Y, Li Y X, et al.2012. Effects of chromium stress on the content of phytochelatins and the activities of key enzymes of ascor bate-glutathione cycle in Brassica chinensis L[J]. Journal of Agro-Environment Science, 31(7): 1303-1309.) [3] 佘玮, 揭雨成, 邢虎成, 等. 2010. 湖南冷水江锑矿区苎麻对重金属的吸收和富集特性[J]. 农业环境科学学报, 29(01): 91-96. (She W, Jie Y C, Xing H C, et al.2010. Uptake and accumulation of heavy metal by ramie (Boehmeria nivea) growing on antimony mining area in Lengshuijing city of Hunan province[J]. Journal of Agro-Environment Science, 29(01): 91-96.) [4] 袁勇. 2017. 苦荞植物络合素合酶(FtPCS)基因克隆与功能研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 陈鹏, pp. 42-48. (Yuan Y.2017. Cloning and functional study of a phytochelatin synthase (FtPCS) gene from Fagopyrum tartaricum[D]. Thesis for M.S., Northwest Agriculture and Forestry University, Suppervisor: Chen P, pp. 42-48.) [5] 张蜀秋. 2011. 植物生理学实验技术教程[M]. 北京: 科学出版社, pp. 205-212. (Zhang S Q.2011. Tutorial on Experimental Techniques in Plant Physiology[M]. Science Press, Beijing, China, pp. 205-212.) [6] 张以顺, 黄霞, 陈云凤. 2009. 植物生理学实验教程[M]. 北京: 高等教育出版社, pp. 156-162. (Zhang Y S, Huang X, Chen Y F.2009. Experimental Course in Plant Physiology[M]. Higher Education Press, Beijing, China, pp. 156-162.) [7] 朱守晶, 石朝艳, 余伟林, 等. 2014. 苎麻植物螯合肽合成酶BnPCS1基因的克隆和表达特性分析[J]. 植物遗传资源学报, 15(03): 582-588. (Zhu S J, Shi C Y, Yu W L, et al.2014. Cloning and characterization of the BnPCS1 gene from ramie (Boehmeria nivea L.[J]. Journal of Plant Genetic Resources, 15(03): 582-588.) [8] Beck A, Lendzian K, Oven M, et al.2003. Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates[J]. Phytochemistry, 62(3): 423-431. [9] Brunetti P, Zanella L, Proia A, et al.2011. Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1[J]. Journal of Experimental Botany, 62(15): 5509-5519. [10] Das U, Rahman M A, Ela E J, et al.2021. Sulfur triggers glutathione and phytochelatin accumulation causing excess Cd bound to the cell wall of roots in alleviating Cd-toxicity in alfalfa[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 262: 128361.1-128361.12. [11] Estrella-Gómez N, Mendoza-Cózatl D, Moreno-Sánchez R, et al.2009. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity[J]. Aquatic Toxicology, 91(4): 320-328. [12] Fan W, Guo Q, Liu C, et al.2018. Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco[J]. Gene, 645: 95-104. [13] Filiz E, Saracoglu I A, Ozyigit I I, et al.2019. Comparative analyses of phytochelatin synthase (PCS) genes in higher plants[J]. Biotechnology and Biotechnological Equipment, 33(1): 1-17. [14] FAO/WHO (Food and Agriculture Organization/World Health Organization). Working document for information and use in discussions related to contaminants and toxins in the GSCTFF (General Standard for Contaminants and Toxins in Food and Feed)[C]//Proceedings of the 8th Session. [15] Gallego S M, Pena L B, Barcia R A, et al.2012. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms[J]. Environmental & Experimental Botany, 83:33-46. [16] Gasic K, Korban S S.2007a. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance[J]. Plant Mol Biol, 64(4): 361-369. [17] Gasic K, Korban S S.2007b. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn[J]. Planta, 225(5):1277-1285. [18] Gong J M, Lee D A, Schroeder J I, et al.2003. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 100(17):10118-23. [19] Grill E, Winnacker E L, Zenk M H, et al.1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins[J]. Proceedings of the National Academy of Sciences of the USA, 84(2): 439-443. [20] Giblin F J.2000. Glutathione: A vital lens antioxidant[J]. Journal of Ocular Pharmacology and Therapeutics, 16(2): 121-135. [21] Kuhnlenz T, Hofmann C, Uraguchi S, et al.2016. Phytochelatin synthesis promotes leaf Zn accumulation of Arabidopsis thaliana plants grown in soil with adequate Zn supply and is essential for survival on Zn-contaminated soil[J]. Plant and Cell Physiology, 57(11): 2342-2352. [22] Küpper H, Parameswaran A, Leitenmaier B, et al.2007. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens[J]. The New Phytologist, 175(4): 655-674. [23] Kim Y Y, Choi H, Segami S, et al.2009. AtHMA1 contributes to the detoxification of excess Zn (Ⅱ) in Arabidopsis[J]. Plant Journal, 58(5): 737-753. [24] Lee B D, Hwang S.2015. Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco[J]. Plant Biotechnology, 9(3): 107-114. [25] Martinoia E, Maeshima M, Neuhaus H E.et al.2007. Vacuolar transporters and their essential role in plant metabolism[J]. Journal of Experimental Botany, 58(1): 83-102. [26] Pomponi M, Censi V, Di Girolamo V, et al.2006. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot[J]. Planta, 223(2): 180-190. [27] Park J, Song W Y, Ko D, et al.2012. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal, 69(2): 278-288. [28] Ramos J, Naya L, Gay M, et al.2008. Functional characterization of an unusual phytochelatin synthase LjPCS3 of Lotus japonicus[J]. Plant Physiology, 148(1): 536-545. [29] Rea P A.2012. Phytochelatin synthase: of a protease a peptide polymerase made[J]. Physiologia Plantarum, 145(1): 154-164. [30] She W, Cui G X, Li X L, et al.2018. Characterization of cadmium concentration and translocation among ramie cultivars as affected by zinc and iron deficiency[J]. Acta Physiologiae Plantarum, 40(6): 1-11. [31] She W, Zhu S, Jie Y, et al.2015. Expression profiling of cadmium response genes in ramie (Boehmeria nivea L.) root[J]. The Bulletin of Environmental Contamination and Toxicology, 94(4): 453-459. [32] Saraswat S, Rai J.2011. Mechanism of metal tolerance and detoxification in mycorrhizal fungi[J]. Biomanagement of Metal-Contaminated Soils, 31(9): 225-240. [33] Tennstedt P, Peisker D, Böttcher C, et al.2009. Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc[J]. Plant Physiology, 149(2): 938-948. [34] Uraguchi S, Tanaka N, Hofmann C, et al.2017. Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains[J]. Plant Cell Physiology, 58(10): 1730-1742. [35] Vatamaniuk O K, Mari S, Lu Y P, et al.1999. AtPCS1 a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution[J]. Proceedings of the National Academy of Sciences of the USA, 96(12): 7110-7115. [36] Vatamaniuk OK, Mari S, Lu Y P, et al.2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides[J]. The Journal of Biological Chemistry, 275(40): 31451-31459. [37] Vivancos P D, Dong Y, Ziegler K, et al.2010. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield[J]. Plant Journal, 64(5): 825-838. [38] Wang F, Wang Z, Zhu C.et al.2012. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity[J]. Acta Biochim Biophys Sin (Shanghai), 44(10): 886-893. [39] Wojas S, Clemens S, Hennig J, et al.2008. Overexpression of phytochelatin synthase in tobacco: Distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium[J]. Journal of Experimental Botany, 59(8): 2205-2219. [40] Walker E L, Conte S S.2011. Transporters contributing to iron trafficking in plants[J]. Plant Molecular Biology, 4(3): 464-476. [41] Zhao C, Xu J, Li Q, et al.2014. Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue[J]. PLOS One, 9(8): e103771. [42] Zanella L, Fattorini L, Brunetti P, et al.2016. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification[J]. Planta, 243(3): 605-622. [43] Zhang X, Rui H, Zhang F, et al.2018. Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis[J]. Front Plant Science, 9: 107. [44] Zhang C H, Yin X M, Gao K H, et al.2013. Non-protein thiols and glutathione S-transferase alleviate Cd stress and reduce root-to-shoot translocation of Cd in rice[J]. Journal of Plant Nutrition and Soil Science, 176(4): 626-633. [45] Zhang X F, Gao B, Xia H P, et al.2014. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass[J]. Ecotoxicology & Environmental Safety, 106: 102-108. |
[1] |
ZHANG Bo-Hao,ZHANG Quan-Wei,LIN Ting,DAI Li-Jun,BAI Xu,ZHAO Xing-Xu,
,ZHANG Yong,
. Expression, Localization and Functional Prediction of MVK and PMVK in Mammary Gland of Dairy Cows (Bos taurus) with Clinical Mastitis[J]. 农业生物技术学报, 2023, 31(7): 1430-1440. |
|
|
|
|