|
|
Research Progress on Genetic Characteristics and Genes Regulation of Abdominal Fat in Broiler Chickens (Gallus gallus) |
TIAN Wei-Hua, NIE Rui-Xue, ZHANG Wen-Hui, LING Yao, TIAN Hao-Yu, ZHANG Bo, ZHANG Hao*, WU Chang-Xin |
College of Animal Science and Technology, China Agricultural University, Beijing 100193, China |
|
|
Abstract Excessive abdominal fat deposition in broiler chickens (Gallus gallus) hinders feed conversion rate, meat quality, egg production performance, fertility and hatchability, resulting in feed waste and environmental pollution. Therefore, on the basis of maintaining good growth performance of broilers, it has become a major problem to be solved in broiler industry to improve the excessive abdominal fat deposition and cultivate lean broilers. This paper mainly reviewed the genetic rule of abdominal fat trait, reviewed the candidate genes and non-coding RNAs responsible for abdominal fat deposition, and discussed the key points and future perspectives of molecular breeding of lean broilers, so as to provide references for the genetic selection of lean broiler breeding.
|
Received: 19 January 2023
|
|
Corresponding Authors:
*zhanghao827@163.com
|
|
|
|
[1] 安荣荣, 冷丽, 龚朋飞, 等. 2017. 高、低脂系肉鸡肌肉品质的比较[J]. 动物营养学报, 29(8): 2977-2987. (An R R, Leng L, Gong P F, et al.2017. Comparison of meat quality between high and lean line broilers[J]. Chinese Journal of Animal Nutrition, 29(8): 2977-2987.) [2] 陈继兰, 文杰, 赵桂苹, 等. 2005. 鸡肉肌苷酸和肌内脂肪等肉品风味性状遗传参数的估计[J]. 遗传, (06): 42-46. (Chen J L, Wen J, Zhao G P, et al. 2005. Genetic parameter estimation for inosine-5-monophosphate and intramuscular fat contents and other meat quality traits in chicken muscle[J]. Hereditas, (06): 42-46.) [3] 陈兰. 2020. GAS6基因调控鸡脂肪前体细胞分化的功能及遗传效应研究[D]. 硕士学位论文, 扬州大学, 导师: 王金玉, pp. 44-60. (Chen L.2020. Study on the function of GAS6 gene in regulating adipocyte differentiation and its genetic effect on chicken [D]. Thesis for M.S., Yangzhou University, Supervisor: Wang J Y. pp. 44-60.) [4] 陈耀峰, 谢可嘉, 张长超, 等. 2018. 鸡ApoB基因g.-112A>G单核苷酸多态性的功能性鉴定与分析[J]. 农业生物技术学报, 26(11): 1919-1927. (Chen Y F, Xie K J, Zhang C C, et al.2018. Functional identification and analysis of ApoB gene SNP g.-112A>G in chickens (Gallus gallus)[J]. Journal of Agricultural Biotechnology, 26(11): 1919-1927.) [5] 龚道清, 李辉. 2000. 肉鸡腹脂沉积与重要经济性状关系的研究进展[J]. 当代畜牧, (3): 28-30. (Gong D Q, Li H. 2000. Research progress on the relationship between abdominal fat deposition and important economic traits in broilers[J]. Contemporary Animal Husbandry, (3): 28-30.) [6] 李辉, 陈冲, 冷丽, 等. 2020. 肉鸡屠体脂肪含量间接选择方法及其效果评估[J]. 东北农业大学学报, 51(08): 39-46. (Li H, Chen C, Leng L, et al.2020. Indirect selection method of fat content in broiler carcass and its effect evaluation[J]. Journal of Northeast Agricultural University, 51(08): 39-46.) [7] 李辉, 龚道清, 杨山, 等. 1997. 肉鸡血浆极低密度脂蛋白浓度与屠体肥度性状的相关研究[J]. 黑龙江畜牧兽医, (8): 1-5. (Li H, Gong D Q, Yang S, et al. 1997. Study on the relationship between plasma very low density lipoproteincon centration and body fatness characteristics in broiler chickens[J]. Heilongjiang Animal Science and Veterinary Medicine, (8): 1-5.) [8] 刘冉冉, 赵桂苹, 文杰. 2018. 鸡基因组育种和保种用SNP芯片研发及应用[J]. 中国家禽, 40(15): 1-6. (Liu R R, Zhao G P, Wen J.2018. Development of genome-wide SNP genotyping arrays for chicken breeding and conservation[J]. China Poultry, 40(15): 1-6.) [9] 马向飞. 2021. SLC22A16对鸡腹部脂肪细胞增殖与分化功能的研究[D]. 硕士学位论文, 河南农业大学, 导师: 孙桂荣, pp. 27-44. (Ma X F.2021. Molecular regulation mechanism of SLC22A16 on proliferation and differentiation of chicken abdominal fat[D]. Thesis for M.S., Henan Agricultural University, Supervisor: Sun G R, pp. 27-44.) [10] 史洪岩, 贺綦, 程敏, 等. 2015. HOPX基因过表达对鸡前脂肪细胞增殖的影响[J]. 中国农业科学, 48(08): 1624-1631. (Shi H Y, He Q, Cheng M, et al.2015. Effects of HOPX gene overexpression on chicken preadipocytes proliferation[J]. Scientia Agricultura Sinica, 48(08): 1624-1631.) [11] 宿志勇, 姜海煦, 冷丽, 等. 2021. 高、低脂系肉鸡饲料转化效率与消化系统相关性研究[J]. 东北农业大学学报, 52(12): 1-8. (Su Z Y, Jiang H X, Leng L, et al.2021. Relationship between feed efficiency and digestive system of fat and lean line broilers[J]. Journal of Northeast Agricultural University, 52(12): 1-8.) [12] 王海威, 王启贵, 王守志, 等. 2009. 肉鸡高、低脂系体脂性状和血清生化指标的比较分析[J]. 东北农业大学学报, 40(11): 76-80. (Wang H W, Wang Q G, Wang S Z, et al.2009. Comparative analysis of body fat traits and serum biochemical parameters between broiler lines divergently selected for abdominal fat content[J]. Journal of Northeast Agricultural University, 40(11): 76-80.) [13] 王海霞, 张志威, 贺綦, 等. 2014. 鸡KLF3基因的表达规律及其对脂肪细胞分化的影响研究[J]. 畜牧兽医学报, 46(1): 26-31. (Wang H X, Zhang Z W, He Q, et al.2014. Expression pattern of chicken Krüppel-like factor 3 gene and its effect on adipocyte differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 46(1): 26-31.) [14] 王启贵, 王娉, 马纪, 等. 2006. 鸡PPARγ和C/EBPα的蛋白表达及其对肉鸡腹脂含量的影响[J]. 中国家禽, 28(23): 14-17. (Wang Q G, Wang P, Ma J, et al.2006. Expression of PPARγ and C/EBP-α protein and its effects on abdominal fat in broilers[J]. China Poultry, 28(23): 14-17.) [15] 杨烨, 宋娇, 付睿琦, 等. 2012. 北京油鸡AMPK基因表达规律及其对肌肉和脂肪细胞内脂肪沉积的影响[J]. 畜牧兽医学报, 43(11): 1703-1709. (Yang Y, Song J, Fu R Q, et al.2012. The expression of Beijing-You chicken AMPK gene and its effects on the adipogenesis in the muscle and adipocyte[J]. Acta Veterinaria et Zootechnica Sinica, 43(11): 1703-1709.) [16] 张琦, 黄娇娇, 杨彩侠, 等. 2016. CRISPR/Cas9介导RB1基因敲除及其在鸡前脂肪细胞分化、增殖中的功能研究[J]. 畜牧兽医学报, 47(9): 10. (Zhang Q, Huang J J, Yang C X, et al.2016. CRISPR/Cas9 mediated RB1 knockout and its impact on chicken preadipocytes differentiation and proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 47(9): 10.) [17] Abasht B, Lamont S.2007. Genome‐wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population[J]. Animal Genetics, 38(5): 491-498. [18] Abdalla B A, Chen X, Li K, et al.2021. Control of preadipocyte proliferation, apoptosis and early adipogenesis by the forkhead transcription factor FoxO6[J]. Life Sciences, 265: 118858. [19] Chao X, Guo L, Wang Q, et al.2020. miR-429-3p/LPIN1 axis promotes chicken abdominal fat deposition via PPARγ pathway[J]. Frontiers in Cell and Developmental Biology, 8: 595637. [20] Chen H Y, Cheng, B H, Ma, Y Yet al.2022a. HBP1 inhibits chicken preadipocyte differentiation by activating the STAT3 signaling via directly enhancing JAK2 expression[J]. Journal of Integrative Agriculture, 21(6): 1740-1754. [21] Chen J, Ren X, Li L, et al.2019a. Integrative analyses of mRNA expression profile reveal the involvement of IGF2BP1 in chicken adipogenesis[J]. International Journal of Molecular Sciences, 20(12). [22] Chen L, Zhang T, Zhang S, et al.2019b. Identification of long non-coding RNA-associated competing endogenous RNA network in the differentiation of chicken preadipocytes[J]. Genes (Basel), 10(10). [23] Chen Y, Gao L, Lin T, et al.2022b. C/EBPZ modulates the differentiation and proliferation of preadipocytes[J]. International Journal of Obesity, 46(3): 523-534. [24] Chen Y, Zhao S, Ding R, et al.2022c. Identification of a long noncoding RNA (lncPRDM16) inhibiting preadipocyte proliferation in the chicken[J]. Journal of Agricultural and Food Chemistry, 70(4): 1335-1345. [25] Cristancho A G, Lazar M A.2011. Forming functional fat: A growing understanding of adipocyte differentiation[J]. Nature Reviews: Molecular Cell Biology, 12(11): 722-734. [26] Cui T, Huang J, Sun Y, et al.2021. KLF2 inhibits chicken preadipocyte differentiation at least in part via directly repressing PPARγ transcript variant 1 expression[J]. Frontiers in Cell and Developmental Biology, 9: 627102. [27] Cui T, Xing T, Huang J, et al.2018. Nuclear respiratory factor 1 negatively regulates the P1 promoter of the peroxisome proliferator-activated receptor-γ gene and inhibits chicken adipogenesis[J]. Frontiers in Physiology, 9: 1823. [28] Demeure O, Duclos M J, Bacciu N, et al.2013. Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines[J]. Genetics Selection Evolution, 45(1): 36. [29] Emmerson D A.1997. Commercial approaches to genetic selection for growth and feed conversion in domestic poultry[J]. Poultry Science, 76(8): 1121-1125. [30] Garin-Shkolnik T, Rudich A, Hotamisligil G S, et al.2014. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues[J]. Diabetes, 63(3): 900-911. [31] Geraert P A, MacLeod M G, Larbier M, et al.1990. Nitrogen metabolism in genetically fat and lean chickens[J]. Poultry Science, 69(11): 1911-1921. [32] Griffin H D, Whitehead C C.1982. Plasma lipoprotein concentration as an indicator of fatness in broilers: Development and use of a simple assay for plasma very low density lipoproteins[J]. British Poultry Science, 23(4): 307-313. [33] Guo L, Chao X, Huang W, et al.2021. Whole transcriptome analysis reveals a potential regulatory mechanism of lncRNA-FNIP2/miR-24-3p/FNIP2 axis in chicken adipogenesis[J]. Frontiers in Cell and Developmental Biology, 9: 653798. [34] Guo L, Huang W, Zhang S, et al.2022. Chicken protein s gene regulates adipogenesis and affects abdominal fat deposition[J]. Animals (Basel), 12(16): 2046. [35] He Q, Wang S Z, Leng L, et al.2014. Differentially expressed genes in the liver of lean and fat chickens[J]. Genetics and Molecular Research, 13(4): 10823-10828. [36] Huang H Y, Liu R R, Zhao G P, et al.2015a. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens[J]. Scientific Reports, 5: 16132. [37] Huang H Y, Zhao G P, Liu R R, et al.2015b. Brain natriuretic peptide stimulates lipid metabolism through its receptor NPR1 and the glycerolipid metabolism pathway in chicken adipocytes[J]. Biochemistry, 54(43): 6622-6630. [38] Jia Z, Jin Z, Shao S, et al.2022. KLF7 promotes preadipocyte proliferation via activation of the Akt signaling pathway by cis-regulating CDKN3[J]. Acta Biochimica et Biophysica Sinica, 54(10): 1486-1496. [39] Jin W, Zhao Y, Zhai B, et al.2021. Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens[J]. PLOS ONE, 16(4): e0249288. [40] Jing Y, Cheng B, Wang H, et al.2022. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness[J]. BMC Genomics, 23(1): 790. [41] Kristensen L S, Andersen M S, Stagsted L V W, et al.2019. The biogenesis, biology and characterization of circular RNAs[J]. Nature Reviews Genetics, 20(11): 675-691. [42] Leclercq B, Whitehead C C.1988a. Leanness in domestic birds: genetic, metabolic and hormonal aspects[M]. Butterworth-Heinemann Press, Oxford, pp. 141-174. [43] Leclercq B, Whitehead C C.1988b. Leanness in domestic birds: Genetic, metabolic and hormonal aspects[M]. Butterworth-Heinemann Press, Oxford, pp. 25-40. [44] Leenstra F R, Pit R.1987. Fat deposition in a broiler sire strain 2. comparisons among lines selected for less abdominal fat, lower feed conversion ratio, and higher body weight after restricted and ad libitum feeding[J]. Poultry Science, 66(2): 193-202. [45] Leveille G A, O'Hea E K, Chakbabarty K.1968. In vivo lipogenesis in the domestic chicken[J]. Proceedings of the Society for Experimental Biology & Medicine Society for Experimental Biology & Medicine, 128(2): 398. [46] Li G, Chen Y, Jin W, et al.2021. Effects of miR-125b-5p on preadipocyte proliferation and differentiation in chicken[J]. Molecular Biology Reports, 48(1): 491-502. [47] Liu C X, Chen L L.2022. Circular RNAs: Characterization, cellular roles, and applications[J]. Cell, 185(12): 2016-2034. [48] Liu R, Sun Y, Zhao G, et al.2013. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens[J]. PLOS ONE, 8(4): e61172. [49] Matoba K, Lu Y, Zhang R, et al.2017. Adipose KLF15 controls lipid handling to adapt to nutrient availability[J]. Cell Reports, 21(11): 3129-3140. [50] Mozo J, Emre Y, Bouillaud F, et al.2005. Thermoregulation: What role for UCPs in mammals and birds?[J]. Bioscience Reports, 25(3-4): 227-249. [51] Na W, Wu Y Y, Gong P F, et al.2018. Embryonic transcriptome and proteome analyses on hepatic lipid metabolism in chickens divergently selected for abdominal fat content[J]. BMC Genomics, 19(1): 384. [52] Nishizaki S S, Boyle A P.2017. Mining the unknown: Assigning function to noncoding single nucleotide polymorphisms[J]. Trends in Genetics, 33(1): 34-45. [53] Park T S, Park J, Lee J H, et al.2019. Disruption of G0/G1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken[J]. FASEB Journal, 33(1): 1188-1198. [54] Qi R, Feng M, Tan X, et al.2013. FATP1 silence inhibits the differentiation and induces the apoptosis in chicken preadipocytes[J]. Molecular Biology Reports, 40(4): 2907-2914. [55] Schierding W, Cutfield W, O'Sullivan J.2014. The missing story behind genome wide association studies: Single nucleotide polymorphisms in gene deserts have a story to tell[J]. Frontiers in Genetics, 5: 39. [56] Shipp S L.2017. Role of appetite-regulating peptides in adipose physiology in broiler chicks[D]. Thesis for M.S., Virginia Polytechnic Institute and State University, Supervisor: Gilbert E R, pp. 35-63. [57] Simon J, Leclercq B.1982. Longitudinal-study of adiposity in chickens selected for high or low abdominal fat content: Further evidence of a glucose-insulin imbalance in the fat line[J]. Journal of Nutrition, 112(10): 1961-1973. [58] Song W Z, Zhong C L, Yuan Y C, et al.2020. Peroxisome proliferator-activated receptor-coactivator 1-beta (PGC-1β) modulates the expression of genes involved in adipogenesis during preadipocyte differentiation in chicken[J]. Gene, 741: 144516. [59] Sun Y, Jin Z, Zhang X, et al.2020. GATA binding protein 3 is a direct target of Kruppel-like transcription factor 7 and inhibits chicken adipogenesis[J]. Frontiers in Physiology, 11: 610. [60] Sun Y, Zhao G, Liu R, et al.2013. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study[J]. BMC Genomics, 14(1): 458. [61] Tian J, Wang S, Wang Q, et al.2009. A single nucleotide polymorphism of chicken acetyl-CoA carboxylase A gene associated with fatness traits[J]. Animal Biotechnology, 21(1): 42-50. [62] Tian W H, Hao X, Nie R X, et al.2022a. Integrative analysis of miRNA and mRNA profiles reveals that gga-miR-106-5p inhibits adipogenesis by targeting the KLF15 gene in chickens[J]. Journal of Animal Science and Biotechnology, 13(1): 1-19. [63] Tian W, Hao X, Nie R, et al.2022b. Comparative transcriptome analysis reveals regulatory mechanism of long non-coding RNAs during abdominal preadipocyte adipogenic differentiation in chickens[J]. Animals (Basel), 12(9): 1099. [64] Tian W, Zhang B, Zhong H, et al.2021. Dynamic expression and regulatory network of circular RNA for abdominal preadipocytes differentiation in chicken (Gallus gallus)[J]. Frontiers in Cell and Developmental Biology, 9: 761638. [65] Wang D, Teng M, Wang Y, et al.2022. GPNMB promotes abdominal fat deposition in chickens: Genetic variation, expressional profile, biological function, and transcriptional regulation[J]. Poultry Science, 101(12): 102216. [66] Wang G, Kim W K, Cline M A, et al.2017a. Factors affecting adipose tissue development in chickens: A review[J]. Poultry Science, 96(10): 3687-3699. [67] Wang H B, Li H, Wang Q G, et al.2007. Profiling of chicken adipose tissue gene expression by genome array[J]. BMC Genomics, 8: 193. [68] Wang Q, Guan T, Li H, et al.2009. A novel polymorphism in the chicken adipocyte fatty acid-binding protein gene (FABP4) that alters ligand-binding and correlates with fatness[J]. Comparative Biochemistry and Physiology B Biochemistry & Molecular Biology, 154(3): 298-302. [69] Wang Q, Li H, Li N, et al.2006. Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken[J]. Poultry Science, 85(3): 429-434. [70] Wang W S, Cheng M, Qiao S P, et al.2017b. Gga-miR-21 inhibits chicken pre-adipocyte proliferation in part by down-regulating Kruppel-like factor 5[J]. Poultry Science, 96(1): 200-210. [71] Wang Y, Mu Y, Li H, et al.2008. Peroxisome proliferator-activated receptor-γ gene: A key regulator of adipocyte differentiation in chickens[J]. Poultry Science, 87(2): 226-232. [72] Wang Y X, Wang H X, Na W, et al.2018. Retinoblastoma 1 (RB1) modulates the proliferation of chicken preadipocytes[J]. BioRxiv, DOI:10.1101/341453. [73] Wang Z, Zhao Q S, Li X Q, et al.2021. MYOD1 inhibits avian adipocyte differentiation via miRNA-206/KLF4 axis[J]. Journal of Animal Science and Biotechnology, 12(1): 55. [74] Xiao C, Sun T, Yang Z, et al.2022. Whole-transcriptome RNA sequencing reveals the global molecular responses and circRNA/lncRNA-miRNA-mRNA ceRNA regulatory network in chicken fat deposition[J]. Poultry Science, 101(11): 102121. [75] Yan J, Gan L, Chen D, et al.2013. Adiponectin impairs chicken preadipocytes differentiation through p38 MAPK/ATF-2 and TOR/p70 S6 kinase pathways[J]. PLOS ONE, 8(10): e77716. [76] Yan J, Yang H, Gan L, et al.2014. Adiponectin-impaired adipocyte differentiation negatively regulates fat deposition in chicken[J]. Journal of Animal Physiology and Animal Nutrition, 98(3): 530-537. [77] Zhai B, Zhao Y L, Fan S X, et al.2021. Differentially expressed lncRNAs related to the development of abdominal fat in Gushi chickens and their interaction regulatory network[J]. Frontiers in Genetics, 12: 802857. [78] Zhang H, Du Z Q, Dong J Q, et al.2014a. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content[J]. BMC Genomics, 15(1): 517. [79] Zhang H, Hu X, Wang Z, et al.2012a. Selection signature analysis implicates the PC1/PCSK1 region for chicken abdominal fat content[J]. PLOS ONE, 7(7): e40736. [80] Zhang H, Wang S Z, Wang Z P, et al.2012b. A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content[J]. BMC Genomics, 13: 704. [81] Zhang J, Cai B, Ma M, et al.2020a. ALDH1A1 inhibits chicken preadipocytes' proliferation and differentiation via the PPARγ pathway in vitro and in vivo[J]. International Journal of Molecular Sciences, 21(9): 3150. [82] Zhang M, Han Y, Zhai Y, et al.2020b. Integrative analysis of circRNAs, miRNAs, and mRNAs profiles to reveal ceRNAs networks in chicken intramuscular and abdominal adipogenesis[J]. BMC Genomics, 21(1): 594. [83] Zhang M, Li F, Ma X F, et al.2019a. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro[J]. BMC Genomics, 20(1): 743. [84] Zhang P J, Wu W Y, Chen Q, et al.2019b. Non-coding RNAs and their integrated networks[J]. Journal of Integrative Bioinformatics, 16(3): 20190027. [85] Zhang S, Li H, Shi H.2006. Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity[J]. Poultry Science, 85(2): 178-184. [86] Zhang T, Zhang X, Han K, et al.2017a. Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken[J]. G3: Genes Genomes Genetics, 7(3): 953-966. [87] Zhang X F, Song H, Qiao S P, et al.2017b. MiR-17-5p and miR-20a promote chicken cell proliferation at least in part by upregulation of c-Myc via MAP3K2 targeting[J]. Scientific Reports, 7(1): 15852. [88] Zhang X Y, Cheng B H, Liu C, et al.2019c. A novel regulator of preadipocyte differentiation, transcription factor TCF21, functions partially through promoting LPL expression[J]. Frontiers in Physiology, 10: 458. [89] Zhang X Y, Wu M Q, Wang S Z, et al.2018. Genetic selection on abdominal fat content alters the reproductive performance of broilers[J]. Animal, 12(6): 1232-1241. [90] Zhang Y, Tian Z, Ye H, et al.2022. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity[J]. Cell Death Discovery, 8(1): 268. [91] Zhang Z, Wang H, Sun Y, et al.2013. Klf7 modulates the differentiation and proliferation of chicken preadipocyte[J]. Acta Biochimica et Biophysica Sinica, 45(4): 280-288. [92] Zhang Z W, Rong E G, Shi M X, et al.2014b. Expression and functional analysis of Krüppel-like factor 2 in chicken adipose tissue 1[J]. Journal of Animal Science, 92(11): 4797-4805. |
|
|
|