|
|
Sequence Variation and Tissue Expression Characteristics of Wnt5A Gene in Goat (Capra hircus) |
LI Shao-Bin, ZHANG Rui-Guo, HE Zhao-Hua,ZHAO Peng-Fei, ZHAO Fang-Fang,WANG Ji-Qing,LIU Xiu,HU Jiang,LUO Yu-Zhu |
College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract The quality and yield of cashmere determine the economic value of cashmere goats (Capra hircus), and hair follicle is the direct tissue to regulate the growth and properties of cashmere. The properties of cashmere can be improved by regulating the development of hair follicle. Wingless-type mouse mammary tumor virus integration site family, member 5A (Wnt5A) gene is an key member in the signaling pathway relates with hair follicle development and play a key role in hair follicle development, but its research in goat is still very limited. In order to well know the molecular genetic characteristics of goat Wnt5A, the variation of this gene was detected by combining PCR-single strand conformation polymorphism (PCR-SSCP) and sequencing in Zhongwei goats, Chaidamu Cashmere goats and Longdong Cashmere goats. The tissue expression characteristics of Wnt5a in Liaoning Cashmere goats and Longdong Cashmere goats were analyzed by qPCR. The results showed that, in the 3 populations, there were 2 mutation sites in the Wnt5A exon 4 amplification region, which were c. 334c>A and c. 213a>G, respectively. Three alleles (A, B and C) were formed and showed five genotypes (AA, AB, AC, BB and BC). In Chaidamu cashmere goat and Longdong cashmere goat, A was the dominant allele, AB was the dominant genotype, while B in Zhongwei goat was the dominant allele and BB was the dominant genotype. Two mutation sites c. 685-5 C > T and c. 685-55 G>A were detected in Wnt5A exon 6, forming 2 alleles D and E, forming 3 genotypes DD, DE and EE. E was the dominant allele and DE was the dominant genotype in the 3 populations. Six haplotypes of H1~H6 were constituted by 2 amplified regions, and the most common one was H2. Wnt5A gene was expressed in all these 7 tissues of Liaoning Cashmere goat and Longdong Cashmere goat, with differences between breeds. At the same time, the expression difference in skin was significant, which speculated that resulted from the correlation between Wnt5A gene expression and the cashmere traits. By comparing the variation and expression characteristics of Wnt5A gene in different goat breeds, the molecular genetic characteristics of the gene were analyzed, which provided basic data for enriching the content of goat genome and the development and utilization of the gene.
|
Received: 07 July 2021
|
|
Corresponding Authors:
*luoyz@gsau.edu.cn
|
|
|
|
[1] 常鹏杰. 2019. 白玉兰(Magnolia denudata) MdeSOS1 基因的 克隆与功能分析[D]. 浙江农林大学, 导师: 王小德. pp:1-8. (Chang P J. 2019. Cloning and functional identification of MdeSOS1 gene in Magnolia denudata[D]. Zhejiang A&F University, Supervisor: Wang X D, pp: 1-8.)
[2] 党晓宏, 高永, 蒙仲举, 等. 2016. 3 种滨藜属植物幼苗叶片 对 NaCl 胁迫的生理响应[J]. 北京林业大学学报, 38:38-49. (Dang X H, Gao Y, Meng Z J, et al. 2016. Leaf physiological characteristics of seedlings of three Atriplex species under NaCl stress[J]. Journal of Beijing Forestry University, 38: 38-49.)
[3] 窦碧霞, 黄建荣, 李连春, 等. 2011. 海马齿对海水养殖系统 中氮、磷的移除效果研究[J]. 水生态学杂志, 32(5): 94-99. (Dou B X, Huang J R, Li L C, et al. 2011. Research on effects of nutrient and phosphate removal from marine aquaculture system by Sesuvium portulacastrum[J]. Journal of Hydroecology, 32(5): 94-99.)
[4] 范伟, 李文静. 2010. 一种兼具研究与应用开发价值的盐生 植 物 : 海 马 齿[J]. 热 带 亚 热 带 植 物 学 报, 18(6): 689-695. (Fan W, Li W J. 2010. Sesuvium portulacastrum L., a promising halophyte in research and application[J]. Journal of Tropical and Subtropical Botany, 18(6): 689-695.)
[5] 付娆, 张海洋, 梁晓艳, 等. 2020. 蒲公英对 NaCl 单盐和海水 复合盐胁迫的生理响应[J]. 山东农业科学, 52(2): 33-37. (Fu R, Zhang H Y, Liang X Y. et al. 2020. Physiological response of dandelion (Taraxacum mongolicum Hand. -Mazz.) to single salt stress of NaCl and com‐ pound salt stress of seawater[J]. Shandong Agricultural Sciences, 52(2): 33-37.)
[6] 和红云, 薛琳, 田丽萍, 等. 2008. 低温胁迫对甜瓜幼苗膜透 性及膜脂过氧化物的影响[J]. 北方园艺, 6: 4-7. (He H Y, Xue L, Tian L P, et al. 2008. Effect of low tempera‐ ture on membrane leakage and lipid peroxidation in muskmelon seedling leaves[J]. Northern Horticulture, 6:4-7.)
[7] 贺岩, 李志岗, 李新鹏, 等. 2005. 盐胁迫条件下两种基因型 小麦生长及保护酶活性的反应[J]. 山西农业大学学报 ( 自 然 科 学 版), 1: 42-44. (He Y, Li Z G, Li X P, et al. 2005. Responses of the growth and the protective en‐zymes activities in two genotypic wheats under salt stress[J]. Journal of Shanxi Agricultural University (Na‐ ture Science Edition), 1: 42-44.)
[8] 姜秀娟, 张素红, 苗立新, 等. 2010. 盐胁迫对水稻幼苗的研究—盐胁迫对水稻幼苗期根系的影响[J]. 北方水稻,40(1): 21-24. (Jiang X J, Zhang S H, Miao L X, et al.2010. Effect of salt stress on rice seedling characteristics effect of salt stress on root system at seedling stage of rice[J]. Northern Rice, 40(1): 21-24.)
[9] 赖弟利, 范昱, 朱红林, 等. 2020. 燕麦耐盐性的生理生化指标网络分析[J]. 作物杂志, 2: 147-155. (Lai D L, Fan Y, Zhu H L, et al. 2020. Network analysis of physiological and biochemical indexes of salt tolerance in oats[J]. Crops, 2: 147-155.)
[10] 李合生. 2000. 植物生理生化实验原理和技术[M]. 高等教育出 版 社, 北 京. pp. 261-263. (Li H S. 2000. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Higher Education Press, Beijing. pp.261-263.)
[11] 李婷婷. 2017. 小麦 TaCIPK8 基因的表达分析及其在转基因烟草中抗盐功能研究[D]. 华中科技大学, 导师: 何光 源. pp: 44-47.(Li T T. 2017. Gene expression and functional analysis of TaCIPK8 in transgenic tobacco[D]. Huazhong University of Science and Technology, Supervisor: He G Y, pp: 44-47.)
[12] 李亚坤. 2020. 紫花苜蓿 MsCIPK8 基因的克隆及其功能研究[D]. 哈尔滨师范大学, 导师: 唐凤兰. pp: 57-63.(Li Y K. 2020. Isolation and characterization of MsCIPK8 from alfalfa (Medicago sativa L.)[D]. Harbin Normal University, Supervisor: Tang F L, pp: 57-63.)
[13] 李瑶, 郑殿峰, 冯乃杰, 等. 2021. 调环酸钙对盐胁迫下水稻幼苗生长及抗性生理的影响[J]. 植物生理学报, 57 (10): 1897-1906. (Li Y, Zheng D F, Feng N J, et al.2021. Effects of prohexadione-calcium on growth and resistance physiology of rice seedlings under salt stress[J]. Plant Physiology Journal, 57(10): 1897-1906.)
[14] 李泽琴, 李静晓, 张根发. 2013. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用[J]. 遗传, 35 (01): 45-54. (Li Z Q, Li J X, Zhang G F. 2013. expression regulation of plant ascorbate peroxidase and its tol‐erance to abiotic stresses[J]. Hereditas (Beijing), 35(01):45-54.)
[15] 廉华, 王萌, 马光恕, 等. 2015. 磷素对甜瓜幼苗期生理指标 的影响[J]. 北方园艺, 23: 14-17. (Lian H, Wang M, Ma G S, et al. 2015. Effect of phosphorus on the physiologi‐ cal indexes of muskmelon seedling[J]. Northern Horti‐ culture, 23: 14-17.)
[16] 林彦彦, 高珊珊, 陈婧芳, 等. 2016. 海马齿对锌的耐性与富 集特征[J]. 湿地科学, 14(04): 561-567. (Lin Y Y, Gao S S, Chen J F, et al. 2016. Tolerance and its zinc bioaccu‐ mulation characteristic of Sesuvium portulacastrum to zinc[J]. Wetland Science, 14(04): 561-567.)
[17] 林永青, 吴佳鑫, 郑新庆, 等. 2011. 浮床栽培海马齿对海水 中悬浮颗粒物清除作用的实验研究[J]. 厦门大学学报 ( 自 然 科 学 版), 50(5): 909-914. (Lin Y Q, Wu J X, Zheng X Q, et al. 2011. Removal of suspended particu‐ late matter in seawater by Sesuvium portulacastrum L. planted in floating-bed[J]. Journal of Xiamen University (Natural Science), 50(5): 909-914.)
[18] 吕金海, 刘鹏. 2016. NaCl 胁迫对鱼腥草过氧化物酶(POD)活性的影响[J]. 现代园艺, 11: 17-18. (Lv J H, Liu P.2016. Effects of NaCl stress on peroxidase (POD) activity in Houttuynia cordata Thunb[J]. xiandai Horticulture,11: 17-18.)
[19] 欧阳敦君, 张鸽香. 2016. 不同种源流苏幼苗的耐热性评价[J]. 东北林业大学学报, 44(10): 17-21. (Ouyang D J, Zhang G X. 2016. Heat resistance evaluation of differ‐ ent provenances of Chionanthus retusus[J]. Journal of Northeast Forestry University, 44(10): 17-21.)
[20] 孙国荣, 彭永臻, 阎秀峰, 等. 2003. 干旱胁迫对白桦实生苗 保护酶活性及脂质过氧化作用的影响[J]. 林业科学,39(1): 165-167. (Sun G R, Peng Y Z, Yan X F, et al.2003. Effect of drought stress on activity of cell defense enzymes and lipid peroxidation in leaves of Betula platy? phylla seedlings[J]. Scientia Silvae Sinicae, 39(1): 165-167.)
[21] 唐昌林. 1996. 中国植物志[M]. 科学出版社, 北京. pp: 30-32. (Tang C L. 1996. Flora of China[M]. Science Press, Beijing. pp. 30-32.)
[22] 薛腾笑, 任子蓓, 任士福. 2018. NaCl 胁迫对美国金钟连翘生理特性的影响[J]. 江苏农业科学, 46(11): 104-108. (Xue T X, Ren Z B, Ren S F. 2018. Impacts of NaCl stress on physiological characteristics of Forsythia inter media[J]. Jiangsu Agricultural Sciences, 46(11): 104-108.)
[23] 严廷良, 钟才荣, 刘强, 等. 2015. 海马齿对重金属Pb、Zn胁迫的生长及生理生化响应[J]. 广西植物, 35(5): 668-672. (Yan T L, Zhong C R, Liu Q, et al. 2015. Effects of Pb and Zn on the growth and physiological response of Sesuvium portulacastrum[J]. Guihaia, 35(5): 668-672.)
[24] 杨成龙, 段瑞军, 李瑞梅, 等. 2010. 盐生植物海马齿耐盐的生理特性[J]. 生态学报, 30(17): 4617-4627. (Yang C L, Duan R J, Li R M, et al. 2010. The physiological charac‐teristics of salt-tolerance in Sesuvium portulacastrum L.[J]. Acta Ecologica Sinica, 30(17): 4617-4627.)
[25] 杨万鹏, 马瑞, 杨永义, 等. 2019. NaCl 处理对黑果枸杞生长 、生理指标的影响[J]. 分子植物育种, 17(13): 4437-4447. (Yang W P, Ma R, Yang Y Y, et al. 2019. Effects of NaCl treatment on the growth and physiological indexes of Lycium ruthenicum[J]. Molecular Plant Breed‐ ing, 17(13): 4437-4447.)
[26] 杨玉坤, 耿计彪, 于起庆, 等. 2019. 盐碱地土壤利用与改良研究进展[J]. 农业与技术, 39(24): 108-111. (Yang Y K, Geng J B, Yu Q Q, et al. 2019. Research progress of soil utilization and improvement in saline-alkaliland[J]. Ag‐ riculture and Technology, 39(24): 108-111.)
[27] 殷朝瑞, 方荣俊, 尚春琼, 等. 2018. 3 个实用桑树品种的耐 盐性生理生化特征及耐盐害的能力评价[J]. 蚕业科学, 44(03): 359-366. (Yin C R, Fang R J, Shang C Q, et al. 2018. Salt-tolerance related physiological and biochemical characteristics and salt tolerance evaluation of three practical mulberry varieties[J]. Science of Sericulture, 44(03): 359-366.)
[28] 赵可夫, 邹琦, 李德全, 等. 1993. 盐分和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J]. 植物学报, 35(7): 519-52. (Zhao K F, Zhou Q, Li D Q, et al.1993. Effects of salt and water stress on lipid peroxidation in halophytic and non-halophytic plants[J]. Bulletin of Botany, 35(7): 519-52.)
[29] 赵秀坊. 2016. 大豆 GmsSOS1 基因通过增强抗氧化酶活性提高拟南芥耐盐性的初步研究[D]. 硕士学位论文, 南 京农业大学, 导师:於丙军, pp: 8-11. (Zhao X F. 2016. Preliminary research on salt tolerance improvement of GmsSOS1 Arabidopsis thaliana by enhancing antioxidant enzyme activities[D]. Thesis for M. S., Nanjing Agricul‐ tural University, Supervisor: Yu B J, pp: 8-11.)
[30] 周桂英, 王四清, 许建新, 等. 2016. 8 种大花蕙兰耐热性指 标筛选及其评价[J]. 安徽农业科学, 44(16): 20-22,34. (Zhou G Y, Wang S Q, Xu J X, et al. 2016. Heat resis‐ tance indexes identification and comprehensive evaluation of 8 Species of Cymbidium hybridium[J]. Anhui Ag-ricultural Sciences, 44(16): 20-22, 34.)
[31] 周扬. 2015. 海马齿细胞膜 Na+/H+逆转运蛋白功能的调控机 理[D]. 博士学位论文, 华中农业大学, 导师: 郭建春. pp: 57-63.(Zhou Y. 2015. Regulation mechanism of plas ma membrane Na+/H+ antiporter of Sesuvium portulacas?trum L.[D]. Thesis for Ph. D, Huazhong Agricultural University, Supervisor: Guo J C, pp: 57-63.)
[32] 周扬, 胡艳平, 杨成龙, 等. 2014. 盐生植物海马齿 SpCBL10基因的克隆及结构预测[J]. 分子植物育种, 12(4): 765-771. (Zhou Y, Hu Y P, Yang C L, et al. 2014. Isolation and structure predicting of the halophyte Sesuvium portu lacastrum L. and SpCBL10 gene[J]. Molecular Plant Breeding, 12(4): 765-771.)
[33] Acosta-Motos J R, Alvarez S, Barba-ESpín G, et al. 2014.Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants[J] Plant Physiology and Biochemis‐ try, 85: 41-50.
[34] An J, Song A, Guan Z, et al. 2014. The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of Chrysanthemum[J]. Molecular Biology Reports, 41(6): 4155-4162.
[35] Fan Y F, Wan S M, Jiang Y S, et al. 2018. Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis[J]. Protoplasma, 255(6): 1827-1837.
[36] Kim B G, Waadt R, Cheong Y H, et al. 2007. The calcium sen‐ sor CBL10 mediates salt tolerance by regulatingion ho‐meostasis in Arabidopsis[J]. Plant Journal: for Cell and Molecular Biology, 52 (3): 473-484.
[37] Liu K, Luan S. 2001. Internal aluminum block of plant inward K+ channels[J]. Plant Cell, 13(6): 1453-1465.
[38] Ma D M, Xu W R W, Li H W, et al. 2014. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.)[J]. Protoplasma, 51(1): 219-231.
[39] Nounjan N, Nghia P T, Theerakulpisut P. 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes[J]. Plant Physiology, 169(6): 596-604.
[40] Parida A K, Das A B. 2005. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology Environmental Safety, 60(3): 324-349.
[41] Rahnama H, Ebrahlmzadeh H. 2005.The effect of NaCl on an‐ tioxidant enzyme activities in potato seeding[J]. Plant Biology, 49(1): 93-97.
[42] Yang C L, Zhou Y, Fan J, et al. 2015. SpBADH of the halo‐ phyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabi? dopsis[J]. Plant Physiology and Biochemistry, 96: 377-387.
[43] Yokas I, Tuna A L, Bürün B, et al. 2008. Responses of the to‐ mato (Lycoper sicones culentum Mill.) plant to exposure to different salt form sand rates[J]. Turkish Journal of Agriculture and Forestry, 32(4): 319-329.
[44] Zhou Y, Yang C, Hu Y, et al. 2018a. The novel Na+/H+ anti‐porter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast[J]. Acta Physiologiae Plantarum, 40(3): 1-9.
[45] Zhou Y, Yin X C, Duan R J, et al. 2015. SpSOS1 and SpAHA1 coordinate in transgenic yeast to improve salt tolerance[J]. PLOS ONE, 10(9): e0137447.
[46] Zhou Y, Yin X, Wan S, et al. 2018b. The Sesuvium portulacas trum plasma membrane Na+/H+antiporter SpSOS1 com plemented the salt sensitivity of transgenic Arabidopsis SOS1 mutant plants[J]. Plant Molecular Biology Reporter, 36(4): 553-563. |
|
|
|