|
|
Physiological Changes and Related Gene Expression Analysis of Sesuvium portulacastrum Under Salt Stress |
LI Yu-Xin1, LUO Xiu-Li1, ZHANG Ting-Ting1, KANG Yu-Qian1, WANG Peng1, JIANG Xing-Yu2,ZHOU Yang1* |
1 School of Horticulture/Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China;
2 School of Tropical Crops/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, Hainan University, Haikou 570228, China |
|
|
Abstract Salt stress is one of the main abiotic stresses that restrict plant growth and development. In this study, the halophyte Sesuvium portulacastrum seedlings were treated with 400 and 800 mmol/L NaCl for 0, 6,12, 24, 48 and 72 h, and the changes of physiological indexes in roots and leaves and the expression level of salt-related genes were analyzed. The results showed that Sesuvium portulacastrum seedlings withered at the beginning of stress, while the growth gradually stabilized with the extension of stress time when treated with 400 mmol/L NaCl. While the seedlings wilted and died gradually with the extension of stress time under 800 mmol/L NaCl. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD) in leaves and roots all increased significantly under 12 h treatment. The accumulation of soluble sugar and proline increased obviously, and then the enzyme activity and osmotic regulation substances contents decreased. The relative conductivity increased first and then decreased. Four salt-tolerant genes were selected for real-time fluorescence quantitative verification. The expression levels of salt-related genes, plasma membrane Na+/H+ antiporter gene salt overly sensitive 1 (SOS1), protein kinase gene CBL-interaccting protein kinase 8 (CIPK8), Calcineurin B-like 10 (CBL10) and plasma membrane H+-ATPase gene (AHA1), were up- regulated in the roots and leaves under salt stress. The expression levels of SpSOS1, SpCIPK8, SpCBL10 and SpAHA1 genes under 800 mmol/L NaCl reached the highest at 12 h after treatment, and the expressions were 6.80, 124.32, 25.93 and 9.52 times of those under 400 mmol/L NaCl at the same time. This study provides a theoretical basis for the study of physiological indexes and related gene expression regulation of plants under salt stress.
|
Received: 16 September 2021
|
|
Corresponding Authors:
*zhouyang@hainanu.edu.cn
|
|
|
|
[1]常鹏杰. 2019. 白玉兰(Magnolia denudata) MdeSOS1 基因的 克隆与功能分析[D]. 浙江农林大学, 导师: 王小德. pp:1-8. (Chang P J. 2019. Cloning and functional identification of MdeSOS1 gene in Magnolia denudata[D]. Zhejiang A&F University, Supervisor: Wang X D, pp: 1-8.)
[2]党晓宏, 高永, 蒙仲举, 等. 2016. 3 种滨藜属植物幼苗叶片对 NaCl 胁迫的生理响应[J]. 北京林业大学学报, 38:38-49. (Dang X H, Gao Y, Meng Z J, et al. 2016. Leaf physiological characteristics of seedlings of three Atriplex species under NaCl stress[J]. Journal of Beijing Forestry University, 38: 38-49.)
[3]窦碧霞, 黄建荣, 李连春, 等. 2011. 海马齿对海水养殖系统 中氮、磷的移除效果研究[J]. 水生态学杂志, 32(5): 94-99. (Dou B X, Huang J R, Li L C, et al. 2011. Research on effects of nutrient and phosphate removal from marine aquaculture system by Sesuvium portulacastrum[J]. Journal of Hydroecology, 32(5): 94-99.)
[4]范伟, 李文静. 2010. 一种兼具研究与应用开发价值的盐生 植 物 : 海 马 齿 [J]. 热带亚热带植物学报, 18(6): 689-695. (Fan W, Li W J. 2010. Sesuvium portulacastrum L., a promising halophyte in research and application[J]. Journal of Tropical and Subtropical Botany, 18(6): 689-695.)
[5]付娆, 张海洋, 梁晓艳, 等. 2020. 蒲公英对 NaCl 单盐和海水 复合盐胁迫的生理响应[J]. 山东农业科学, 52(2): 33-37. (Fu R, Zhang H Y, Liang X Y. et al. 2020. Physiological response of dandelion (Taraxacum mongolicum Hand. -Mazz.) to single salt stress of NaCl and com‐ pound salt stress of seawater[J]. Shandong Agricultural Sciences, 52(2): 33-37.)
[6]和红云, 薛琳, 田丽萍, 等. 2008. 低温胁迫对甜瓜幼苗膜透 性及膜脂过氧化物的影响[J]. 北方园艺, 6: 4-7. (He H Y, Xue L, Tian L P, et al. 2008. Effect of low tempera‐ ture on membrane leakage and lipid peroxidation in muskmelon seedling leaves[J]. Northern Horticulture, 6:4-7.)
[7]贺岩, 李志岗, 李新鹏, 等. 2005. 盐胁迫条件下两种基因型 小麦生长及保护酶活性的反应[J]. 山西农业大学学报 (自然科学版), 1: 42-44. (He Y, Li Z G, Li X P, et al. 2005. Responses of the growth and the protective enzymes activities in two genotypic wheats under salt stress[J]. Journal of Shanxi Agricultural University (Na‐ ture Science Edition), 1: 42-44.)
[8]姜秀娟, 张素红, 苗立新, 等. 2010. 盐胁迫对水稻幼苗的研究—盐胁迫对水稻幼苗期根系的影响[J]. 北方水稻,40(1): 21-24. (Jiang X J, Zhang S H, Miao L X, et al.2010. Effect of salt stress on rice seedling characteristics effect of salt stress on root system at seedling stage of rice[J]. Northern Rice, 40(1): 21-24.)
[9]赖弟利, 范昱, 朱红林, 等. 2020. 燕麦耐盐性的生理生化指标网络分析[J]. 作物杂志, 2: 147-155. (Lai D L, Fan Y, Zhu H L, et al. 2020. Network analysis of physiological and biochemical indexes of salt tolerance in oats[J]. Crops, 2: 147-155.)
[10]李合生. 2000. 植物生理生化实验原理和技术[M]. 高等教育出版社, 北京. pp. 261-263. (Li H S. 2000. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Higher Education Press, Beijing. pp.261-263.)
[11]李婷婷. 2017. 小麦 TaCIPK8 基因的表达分析及其在转基因 烟草中抗盐功能研究[D]. 华中科技大学, 导师: 何光 源. pp: 44-47.(Li T T. 2017. Gene expression and functional analysis of TaCIPK8 in transgenic tobacco[D]. Huazhong University of Science and Technology, Supervisor: He G Y, pp: 44-47.)
[12]李亚坤. 2020. 紫花苜蓿 MsCIPK8 基因的克隆及其功能研究 [D]. 哈尔滨师范大学, 导师: 唐凤兰. pp: 57-63.(Li Y K. 2020. Isolation and characterization of MsCIPK8 from alfalfa (Medicago sativa L.) [D]. Harbin Normal University, Supervisor: Tang F L, pp: 57-63.)
[13]李瑶, 郑殿峰, 冯乃杰, 等. 2021. 调环酸钙对盐胁迫下水稻幼苗生长及抗性生理的影响 [J]. 植物生理学报, 57 (10): 1897-1906. (Li Y, Zheng D F, Feng N J, et al.2021. Effects of prohexadione-calcium on growth and resistance physiology of rice seedlings under salt stress [J]. Plant Physiology Journal, 57(10): 1897-1906.)
[14]李泽琴, 李静晓, 张根发. 2013. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用[J]. 遗传, 35 (01): 45-54. (Li Z Q, Li J X, Zhang G F. 2013. Expression regulation of plant ascorbate peroxidase and its tolerance to abiotic stresses[J]. Hereditas (Beijing), 35(01):45-54.)
[15]廉华, 王萌, 马光恕, 等. 2015. 磷素对甜瓜幼苗期生理指标 的影响[J]. 北方园艺, 23: 14-17. (Lian H, Wang M, Ma G S, et al. 2015. Effect of phosphorus on the physiological indexes of muskmelon seedling[J]. Northern Horticulture, 23: 14-17.)
[16]林彦彦, 高珊珊, 陈婧芳, 等. 2016. 海马齿对锌的耐性与富 集特征[J]. 湿地科学, 14(04): 561-567. (Lin Y Y, Gao S S, Chen J F, et al. 2016. Tolerance and its zinc bioaccumulation characteristic of Sesuvium portulacastrum to zinc[J]. Wetland Science, 14(04): 561-567.)
[17]林永青, 吴佳鑫, 郑新庆, 等. 2011. 浮床栽培海马齿对海水 中悬浮颗粒物清除作用的实验研究[J]. 厦门大学学报 ( 自 然 科 学 版), 50(5): 909-914. (Lin Y Q, Wu J X, Zheng X Q, et al. 2011. Removal of suspended particulate matter in seawater by Sesuvium portulacastrum L. planted in floating bed[J]. Journal of Xiamen University (Natural Science), 50(5): 909-914.)
[18]吕金海, 刘鹏. 2016. NaCl 胁迫对鱼腥草过氧化物酶(POD)活性的影响 [J]. 现代园艺, 11: 17-18. (Lv J H, Liu P.2016. Effects of NaCl stress on peroxidase (POD) activity in Houttuynia cordata Thunb[J]. xiandai Horticulture,11: 17-18.)
[19]欧阳敦君, 张鸽香. 2016. 不同种源流苏幼苗的耐热性评价[J]. 东北林业大学学报, 44(10): 17-21. (Ouyang D J, Zhang G X. 2016. Heat resistance evaluation of different provenances of Chionanthus retusus[J]. Journal of Northeast Forestry University, 44(10): 17-21.)
[20]孙国荣, 彭永臻, 阎秀峰, 等. 2003. 干旱胁迫对白桦实生苗 保护酶活性及脂质过氧化作用的影响[J]. 林业科学,39(1): 165-167. (Sun G R, Peng Y Z, Yan X F, et al.2003. Effect of drought stress on activity of cell defense enzymes and lipid peroxidation in leaves of Betula platy phylla seedlings[J]. Scientia Silvae Sinicae, 39(1): 165-167.)
[21]唐昌林. 1996. 中国植物志[M]. 科学出版社, 北京. pp: 30-32. (Tang C L. 1996. Flora of China[M]. Science Press, Beijing. pp. 30-32.)
[22]薛腾笑, 任子蓓, 任士福. 2018. NaCl 胁迫对美国金钟连翘生理特性的影响[J]. 江苏农业科学, 46(11): 104-108. (Xue T X, Ren Z B, Ren S F. 2018. Impacts of NaCl stress on physiological characteristics of Forsythia inter? media[J]. Jiangsu Agricultural Sciences, 46(11): 104-108.)
[23]严廷良, 钟才荣, 刘强, 等. 2015. 海马齿对重金属Pb、Zn胁迫的生长及生理生化响应[J]. 广西植物, 35(5): 668-672. (Yan T L, Zhong C R, Liu Q, et al. 2015. Effects of Pb and Zn on the growth and physiological response of Sesuvium portulacastrum[J]. Guihaia, 35(5): 668-672.)
[24]杨成龙, 段瑞军, 李瑞梅, 等. 2010. 盐生植物海马齿耐盐的 生理特性[J]. 生态学报, 30(17): 4617-4627. (Yang C L, Duan R J, Li R M, et al. 2010. The physiological charac‐teristics of salt-tolerance in Sesuvium portulacastrum L. [J]. Acta Ecologica Sinica, 30(17): 4617-4627.)
[25]杨万鹏, 马瑞, 杨永义, 等. 2019. NaCl 处理对黑果枸杞生长 、生理指标的影响[J]. 分子植物育种, 17(13): 4437-4447. (Yang W P, Ma R, Yang Y Y, et al. 2019. Effects of NaCl treatment on the growth and physiological indexes of Lycium ruthenicum[J]. Molecular Plant Breeding, 17(13): 4437-4447.)
[26]杨玉坤, 耿计彪, 于起庆, 等. 2019. 盐碱地土壤利用与改良研究进展[J]. 农业与技术, 39(24): 108-111. (Yang Y K, Geng J B, Yu Q Q, et al. 2019. Research progress of soil utilization and improvement in saline-alkali land[J]. Agriculture and Technology, 39(24): 108-111.)
[27]殷朝瑞, 方荣俊, 尚春琼, 等. 2018. 3 个实用桑树品种的耐 盐性生理生化特征及耐盐害的能力评价[J]. 蚕业科学, 44(03): 359-366. (Yin C R, Fang R J, Shang C Q, et al. 2018. Salt-tolerance related physiological and biochemical characteristics and salt tolerance evaluation of three practical mulberry varieties[J]. Science of Sericulture, 44(03): 359-366.)
[28]赵可夫, 邹琦, 李德全, 等. 1993. 盐分和水分胁迫对盐生和 非盐生植物细胞膜脂过氧化作用的效应[J]. 植物学 报, 35(7): 519-52. (Zhao K F, Zhou Q, Li D Q, et al.1993. Effects of salt and water stress on lipid peroxidation in halophytic and nonhalophytic plants[J]. Bulletin of Botany, 35(7): 519-52.)
[29]赵秀坊. 2016. 大豆 GmsSOS1 基因通过增强抗氧化酶活性提高拟南芥耐盐性的初步研究[D]. 硕士学位论文, 南 京农业大学, 导师:於丙军, pp: 8-11. (Zhao X F. 2016. Preliminary research on salt tolerance improvement of GmsSOS1 Arabidopsis thaliana by enhancing antioxidant enzyme activities[D]. Thesis for M. S., Nanjing Agricul‐ tural University, Supervisor: Yu B J, pp: 8-11.)
[30]周桂英, 王四清, 许建新, 等. 2016. 8 种大花蕙兰耐热性指 标筛选及其评价[J]. 安徽农业科学, 44(16): 20-22,34. (Zhou G Y, Wang S Q, Xu J X, et al. 2016. Heat resis‐ tance indexes identification and comprehensive evaluation of 8 Species of Cymbidium hybridium[J]. Anhui Agricultural Sciences, 44(16): 20-22, 34.)
[31]周扬. 2015. 海马齿细胞膜 Na+/H+逆转运蛋白功能的调控机 理[D]. 博士学位论文, 华中农业大学, 导师: 郭建春. pp: 57-63.(Zhou Y. 2015. Regulation mechanism of plas ma membrane Na+/H+ antiporter of Sesuvium portulacas trum L. [D]. Thesis for Ph. D, Huazhong Agricultural University, Supervisor: Guo J C, pp: 57-63.)
[32]周扬, 胡艳平, 杨成龙, 等. 2014. 盐生植物海马齿 SpCBL10基因的克隆及结构预测[J]. 分子植物育种, 12(4): 765-771. (Zhou Y, Hu Y P, Yang C L, et al. 2014. Isolation and structure predicting of the halophyte Sesuvium portu? lacastrum L. and SpCBL10 gene[J]. Molecular Plant Breeding, 12(4): 765-771.)
[33]Acosta-Motos J R, Alvarez S, Barba-ESpín G, et al. 2014.Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants[J] Plant Physiology and Biochemis‐try, 85: 41-50.
[34]An J, Song A, Guan Z, et al. 2014. The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of Chrysanthemum[J]. Molecular Biology Re‐ ports, 41(6): 4155-4162.
[35]Fan Y F, Wan S M, Jiang Y S, et al. 2018. Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis[J]. Protoplasma, 255(6): 1827-1837.
[36]Kim B G, Waadt R, Cheong Y H, et al. 2007. The calcium sen‐ sor CBL10 mediates salt tolerance by regulatingion ho‐meostasis in Arabidopsis[J]. Plant Journal: for Cell and Molecular Biology, 52 (3): 473-484.
[37]Liu K, Luan S. 2001. Internal aluminum block of plant inward K+ channels[J]. Plant Cell, 13(6): 1453-1465.
[38]Ma D M, Xu W R W, Li H W, et al. 2014. Coexpression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.) [J]. Protoplasma, 51(1): 219-231.
[39]Nounjan N, Nghia P T, Theerakulpisut P. 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes[J]. Plant Physiology, 169(6): 596-604.
[40]Parida A K, Das A B. 2005. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology Environmental Safety, 60(3): 324-349.
[41]Rahnama H, Ebrahlmzadeh H. 2005.The effect of NaCl on an-tioxidant enzyme activities in potato seeding[J]. Plant Biology, 49(1): 93-97.
[42]Yang C L, Zhou Y, Fan J, et al. 2015. SpBADH of the halo‐ phyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabi dopsis[J]. Plant Physiology and Biochemistry, 96: 377-387.
[43]Yokas I, Tuna A L, Bürün B, et al. 2008. Responses of the tomato (Lycoper sicones culentum Mill.) plant to exposure to different salt form sand rates[J]. Turkish Journal of Agriculture and Forestry, 32(4): 319-329.
[44]Zhou Y, Yang C, Hu Y, et al. 2018a. The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast[J]. Acta Physiologiae Plantarum, 40(3): 1-9.
[45]Zhou Y, Yin X C, Duan R J, et al. 2015. SpSOS1 and SpAHA1 coordinate in transgenic yeast to improve salt tolerance [J]. PLOS ONE, 10(9): e0137447.
[46]Zhou Y, Yin X, Wan S, et al. 2018b. The Sesuvium portulacas? trum plasma membrane Na+/H+ antiporter SpSOS1 complemented the salt sensitivity of transgenic Arabidopsis SOS1 mutant plants[J]. Plant Molecular Biology Reporter, 36(4): 553-563. |
|
|
|