|
|
Effect of Spermine on Expression of Polyamine Metabolism-related Key Genes and Polyamine Contents in Jejunum and Ileum of Female Geese (Anser cygnoides) |
YI Zhi-Xin1,2, JIANG Yi-Long1, LI Lin-Xiang2, JIANG Dong-Mei1, KANG Bo1,* |
1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; 2 Bazhong Academy of Green Agriculture & Innovative Development, Bazhong 636000, China |
|
|
Abstract Spermine accelerates the repair of intestinal mucosal injury, improves activities of intestinal digestive enzymes, polyamine homeostasis, and intestinal function. To research the effects of spermine on key genes related to polyamine metabolism and polyamine contents in the jejunum and ileum in Sichuan white goose (Anser cygnoides), the female geese were intragastrically administered with 5 and 10 mg/kg spermine (body weight). The mRNA expression levels of key genes related to polyamine metabolism and the content of polyamines in female geese in jejunum and ileum tissues were measured by qPCR and high performance liquid chromatography. The results showed that the expression levels of ornithine decarboxylase antizyme inhibitor 2 gene (AZIN2), ornithine decarboxylase antizyme 1 (OAZ1) and OAZ2 genes, and the contents of spermidine and spermine in jejunum of female geese treated with spermine at 5 mg/kg were significantly higher than that in the control group (P<0.05), while expression levels of AZIN1 and acetylpolyamine oxidase gene (APAO) were significantly decreased (P<0.05). The expression levels of AZIN2 and spermine synthase gene (SPMS) in ileum of female geese treated with spermine at 5 mg/kg were significantly higher than that in the control group (P<0.05), while the mRNA expression level of spermidine/spermine-N'-acetyltransferase gene (SSAT) was significantly decreased (P<0.05). The expression levels of AZIN2, OAZ2, ornithine decarboxylase gene (ODC), APAO and spermine oxidase gene (SMO) and spermine content in jejunum of female geese treated with spermine at 10 mg/kg were significantly higher than that in the control group (P<0.05), while the mRNA expression level of spermidine synthase gene (SPDS) and putrescine content were significantly lower (P<0.05), respectively. The expression levels of AZIN2, ODC, SPDS and APAO in ileum of female geese treated with spermine at 10 mg/kg were significantly higher than that in the control group (P<0.05), while the content of putrescine was significantly decreased (P<0.05). These results suggest that exogenous spermine regulates polyamine homeostasis in small intestinal tissues of female geese by mediating the expression levels of polyamine metabolism genes. The effects of spermine on polyamine homeostasis in jejunum and ileum of female geese were different to some extent. This work provides some basic information to polyamine metabolism researches in goose small intestine, and lays a foundation for the further studies on the polyamine metabolism in poultry intestine.
|
Received: 14 October 2021
|
|
Corresponding Authors:
*bokang@sicau.edu.cn
|
|
|
|
[1] 陈咨余, 姜冬梅, 康波, 等. 2017. 腹腔注射亚精胺对小鼠卵巢组织多胺含量及代谢相关基因表达的影响[J]. 华南农业大学学报, 38(4): 52-56. (Chen Z Y, Jiang D M, Kang B, et al.2017. Effects of intraperitoneal spermi-dine injection on polyamine content and metabolism-re-lated gene expression in mouse ovary[J]. Journal ofSouth China Agricultural University, 38(4): 52-56.) [2] 程志斌, 姜自琴, 廖国周, 等. 2014. 口服精胺对哺乳仔猪小肠组织发育的影响[J]. 饲料工业, 35(18): 34-37. (Cheng Z B, Jiang Z Q, Liao G Z, et al.2014. Effects of orally administered spermine on the small intestinal growth in suckling piglets[J]. Feed Industry, 35(18): 34-37.) [3] 杜菲, 易治鑫, 于海莹, 等. 2019. 精胺对雌鹅十二指肠多胺代谢关键基因表达及多胺含量的影响[J]. 农业生物技术学报, 27(8): 1445-1451. (Du F, Yi Z X, Yu H Y, et al.2019. Effect of spermine on expression of key genes related to polyamine metabolism and polyamine contents in the duodenum of female geese (Anser cygnoides)[J]. Journal of Agricultural Biotechnology, 27(8): 1445-1451.) [4] 何余湧, 邹伟, 刘晓兰, 等. 2012. 妊娠后期母猪和仔猪补饲外源精胺对初生和28日龄仔猪肠道形态结构及二糖酶活性的影响[J]. 动物营养学报, 24(8): 1429-1437. (He Y Y, Zou W, Liu X L, et al.2012. Effects of dietary exogenous spermine supplemented to late-pregnant sows and suckling piglets on intestinal morphology and disaccharidase activity of newborn and 28-day-old piglets[J]. Chinese Journal of Animal Nutrition, 24(8): 1429-1437.) [5] 姜自琴, 廖国周, 樊月圆, 等. 2014. 精胺对哺乳仔猪小肠黏膜二糖酶比活力的影响[J]. 饲料博览, (9): 1-5. (Jiang Z Q, Liao G Z, Fan Y Y, et al. 2014. Effects of orally administered spermine at various doses on disaccharidase specific activities of intestinal mucosa in suckling piglets[J]. Feed Review, (9): 1-5.) [6] 王贵鸿, 马容, 康波, 等. 2014. 多胺跨膜物质转运的机制[J]. 动物营养学报, 26(11): 1-6. (Wang G H, Ma R, Kang B, et al.2014. Mechanisms of transmembrane transport of polyamines[J]. Chinese Journal of Animal Nutrition, 26(11): 1-6.) [7] 王猛, 侯永清, 丁斌鹰, 等. 2007. 精胺对断奶仔猪小肠组织形态的影响[J]. 动物营养学报, 19(4): 366-371. (Wang M, Hou Y Q, Ding B Y, et al.2007. Effect of spermine on histological morphology and function of small intestine in weaned piglets[J]. Chinese Journal of Animal Nutrition, 19(4): 366-371.) [8] 王小城, 熊霞, 龚敏, 等. 2014. 外源多胺对断奶仔猪肠道结构和功能的作用及机制[J]. 动物营养学报, 26(9): 2457-2462. (Wang X C, Xiong X, Gong M, et al.2014. Exogenous Polyamine: Effects on intestinal structure and function in piglet and its mechanism[J]. Chinese Journal of Animal Nutrition, 26(9) : 2457-2462.) [9] 徐麒麟, 康波, 姜冬梅, 等. 2017. 亚精胺对鼠免疫器官指数及炎症因子表达的影响[J]. 浙江农业学报, 29(2): 200-205. (Xu Q L, Kang B, Jiang D M, et al.2017. Effects of spermidine on immune organ index and expression of inflammatory cytokines in mice[J]. Acta Agriculturae Zhejiangensis, 29(2): 200-205.) [10] 易星, 莫远亮, 姜冬梅, 等. 2014. 多胺的生物学功能及其调控机制[J]. 动物营养学报, 26(2): 348-352. (Yi X, Mo Y L, Jiang D M, et al.2014. Biological functions of poly-amine and its regulatory mechanisms[J]. Chinese Journal of Animal Nutrition, 26(2): 348-352.) [11] 易治鑫, 姜冬梅, 康波. 2014. 四川白鹅OAZ1和OAZ2基因组织差异表达的研究[J]. 华北农学报, 29(1): 50-54. (Yi Z X, Jiang D M, Kang B.2014. Study on differential expression of OAZ1 and OAZ2 gene in various tissues of the sichuan white goose[J]. Acta Agriculturae Boreali-Sinica, 29(1): 50-54.) [12] 易治鑫, 蒋易龙, 王秋宏, 等. 2019. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 45(5): 596-602. (Yi Z X, Jiang Y L, Wang Q H, et al.2019. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agric. & Life Sci.), 45(5): 596-602.) [13] Abdulhussein A A, Wallace H M.2014. Polyamines and membrane transporters[J]. Amino Acids, 46(3): 655-660. [14] Bardocz S, Duguid T J, Brown D S, et al.1995. The importance of dietary polyamines in cell regeneration and growth[J]. British Journal of Nutrition, 73(6): 819-828. [15] Campbell J M, Crenshaw J D, Polo J.2013. The biological stress of early weaned piglets[J]. Journal of Animal Science and Biotechnology, 4(1): 19. [16] Cao W, Xu X. Jia G, et al.2018. Roles of spermine in modulating the antioxidant status and Nrf2 signalling molecules expression in the thymus and spleen of suckling piglets-new insight[J]. Journal of Animal Physiology and Animal Nutrition, 102(1): e183-e192. [17] Chaturvedi R, de Sablet T, Peek R M, et al.2012. Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer risk[J]. Gut Microbes, 3(1): 48-56. [18] Fernandes J R, Jain S, Banerjee A.2017. Expression of ODC1, SPD, SPM and AZIN1 in the hypothalamus, ovary and uterus during rat estrous cycle[J]. General and Comparative Endocrinology, 246: 9-22. [19] Flynn N E, Bird J G, Guthrie A S.2009. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine[J]. Amino Acids, 37(1): 123-129. [20] Gerner E W.2007. Impact of dietary amino acids and polyamines on intestinal carcinogenesis and chemoprevention in mouse models[J]. Biochemical Society Transactions, 35(Pt 2): 322-325. [21] Holtta E.1977. Oxidation of spermidine and spermine in rat liver: Purification and properties of polyamine oxidase[J]. Biochemistry, 16(1): 91-100. [22] Jiang, D M, Mo G L, Jiang Y L, et al.,2021. Exogenous spermidine affects polyamine metabolism in the mouse hypothalamus[J]. Open Life Sciences, 16(1): 39-45. [23] Kamyar Z, Sharon B, Manoocher S.2019 .Polyamine catabolism in acute kidney injury[J]. International Journal of Molecular Sciences, 20(6): 4790-4803. [24] Kang B, Deng T, Chen Z Y, et al.2018. Molecular cloning of AZIN2 and its expression profiling in goose tissues and follicles[J]. Folia Biologica (Kraków), 66: 25-31. [25] Kang B, Jiang D M, He H, et al.2017a. Effect of Oaz1 overexpression on goose ovarian granulosa cells[J]. Amino Acids, 49(6): 1123-1132. [26] Kang B, Jiang D M, Ma R, et al.2017b. OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese[J]. PLOS ONE, 12(3): e0175016. [27] Larque E, Sabater-Molina M, Zamora S.2007. Biological significance of dietary polyamines[J]. Nutrition, 23(1): 87-95. [28] Levillain O, Ramos-Molina B, Forcheron F, et al.2012. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys[J]. Amino Acids, 43(5): 2153-2163. [29] Liu J H, Wang W, Wu H, et al.2015. Polyamines function in stress tolerance: From synthesis to regulation[J]. Frontiers in Plant Science, 6: 827. [30] Ma R, Jiang D M, Kang B, et al.2015. Molecular cloning and mRNA expression analysis of antizyme inhibitor 1 in the ovarian follicles of the Sichuan white goose[J]. Gene, 568(1): 55-60. [31] Michael A J.2016. Biosynthesis of polyamines and polyamine-containing molecules[J]. The Biochemical Journal, 473(15): 2315-2329. [32] Murray-Stewart T, Ferrari E, Xie Y.et al.2017. Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047[J]. PLOS ONE, 12(4): e0175917. [33] Narashans A S, Swarnava T, Surbhi A, et al.2021. Polyamines: Functions, metabolism, and role in human disease management[J]. Medical Sciences, 9(2): 44. [34] Niu C Y, Zhang S J, Mo G L, et al.2021. Effects of ODC on polyamine metabolism, hormone levels, cell proliferation and apoptosis in goose ovarian granulosa cells[J]. Poultry Science, 100(8): 101226. [35] Olivier L, Bruno R M, Fabien F, et al.2012. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys[J]. Amino Acids, 43(5): 2153-2163. [36] Pegg A E.2016. Functions of Polyamines in Mammals[J]. The Journal of Biological Chemistry, 291(29): 14904-14912. [37] Seiler N, Bolkenius F N, Knodgen B, et al.1980. Polyamine oxidase in rat tissues[J]. Biochimica et Biophysica Acta(BBA)-Enzymology, 615(2): 480-488. [38] Setyawan E M, Kim M J, Oh H J, et al.2016. Spermine reduces reactive oxygen species levels and decreases cryocapacitation in canine sperm cryopreservation[J]. Biochemical and Biophysical Research Communications, 479(4): 927-932. [39] Soda K.2020. Spermine and gene methylation: A mechanism of lifespan extension induced by polyamine-rich diet[J]. Amino Acids, 52(2): 213-224. [40] Tiina R, Alexandra L, Kristiina K, et al.2016. Expression of ODC antizyme inhibitor 2 (AZIN2) in human secretory cells and tissues[J]. PLOS ONE, 11(3): e0151175. [41] van Wettere W H, Willson N L, Pain S J, et al.2016. Effect of oral polyamine supplementation pre-weaning on piglet growth and intestinal characteristics[J]. Animal, 10(10): 1655-1659. [42] Wu Y Y, Li T M, Zang L Q, et al.2018. Effects of berberine on tumor growth and intestinal permeability in HCT116 tumor-bearing mice using polyamines as targets[J]. Biomedicine & Pharmacotherapy, 107: 1447-1453. |
|
|
|