|
|
Cloning and Bioinformatics Analysis of GbUGT73C1 Gene Responding to Fusarium wilt Resistance in Gossypium barbadense |
DENG Xiao-Juan*, LU Xiao-Shuang, ZHANG Meng-Jie, HAN Wan-Li, CHEN Quan-Jia, QU Yan-Ying |
College of Agriculture, Xinjiang Agricultural University , Urumqi 830052, China |
|
|
Abstract Fusarium wilt seriously endangers the growth and development of sea islands cotton (Gossypium barbadense). Previous study based on the transcriptome data of sea island cotton inoculated with Fusarium oxysporum, the resistance-related gene uridine diphosphate glycosyltransferase 73C1 (GbUGT73C1) was screened and identified. In this study, the full length of the GbUGT73C1 gene CDS was found through the sea island cotton genome, and the gene was cloned from '06-146' with high resistance to Fusarium wilt. The cloned nucleic acid and amino acid sequences were performed with bioinformatics analysis, and the gene expression was analyzed after inoculation with disease resistance and susceptible material. The results showed that the full length of CDS of GbUGT73C1 was 1 486 bp, a total of 476 amino acids were encoded. The coding protein included hydrophobic, fat-soluble and unstable protein, without transmembrane structure and signal peptide. With glycocyltransferase-B (GT-B) structure, it belonged to the glycosyltransferase GT-B superfamily. GbUGT73C1 protein was predicted to be localized in the cytoplasmic. The prediction of molecular phylogenetic relationship was closest to that of G. barbadense and G. raimondii. GbUGT73C1 was expressed rapidly in disease-resistant material, and the expression level was extremely significantly higher than that in disease-susceptible material (P<0.01), indicated that resistant '06-146' resisted Fusarium wilt infection by expressing GbUGT73C1 gene more rapidly and in a higher amount .This study lays a foundation for further investigation on the mechanism of GbUGT73C1 response to sea island cotton's resistance to Fusarium wilt, and provides important gene resources for cotton disease-resistance molecular breeding.
|
Received: 05 July 2021
|
|
Corresponding Authors:
* dengxj007@163.com
|
|
|
|
[1] 范蓉, 郭亚萍, 赵柯柯, 等. 2021. 旱、盐胁迫下棉花3个转录因子基因的表达与生理指标相关性分析[J], 生物学杂志, 38(4): 86-91. (Fan R, Guo Y P, Zhao K K, et al.2021. Correlation analysis of expression of three transcription factor genes and physiological indexes under cotton drought and salt stress[J]. Journal of Biology, 38(4): 86-91. ) [2] 黄启秀, 曲延英, 姚正培,等. 2017. 海岛棉枯萎病抗性与类黄酮代谢途径基因表达量的相关性[J]. 作物学报, 43(12): 1791-1801. (Huang Q X, Qu Y Y, Yao Z P, et al.2017. Correlation between Fusarium wilt resistance and expression levels of genes involved in flavonoid metabolism pathway in Gossypium barbadense L.[J]. Crop Journal, 43(12): 1791-1801.) [3] 解林峰, 任传宏, 张波, 等. 2019. 植物类黄酮生物合成相关UDP-糖基转移酶研究进展[J]. 园艺学报, 2019, 46(9): 1655-1669. (Xie L F, Ren C X, Zhang B, et al.2019. Research progress of UDP-Glycotransferase related to flavonoid biosynthesis in plants[J]. Acta Horticulturae Sinica, 46(9): 1655-1669.) [4] 康乐, 王海洋. 2014. 我国生物技术育种现状与发展趋势[J]. 中国农业科技导报, 16(1): 16-23. (Kang L, Wang H Y.2014. Current situation and development trend of biotechnology breeding in China[J]. Journal of Agricultural Science and Technology of China, 16(1): 16-23.) [5] 刘艳. 2013. 海岛棉枯萎病抗性相关基因的克隆及功能验证[D]. 硕士学位论文, 新疆农业大学, 导师: 曲延英, pp. 1. (Liu Y.2013. Cloning and functional validation of Fusarium wilt resistance genes in Island cotton[D]. Thesis for M.S., Xinjiang Agricultural University, Supervisor: Qu Y Y, pp. 1) [6] 陆小双, 郑凯, 龙遗磊, 等. 2021. 海岛棉枯萎病抗性与糖基转移酶类基因表达量的相关性[J/OL]. 分子植物育种, 1-16. (Lu X S, Zhen K, Long Y L, et al.2021. Correlation between Fusarium wilt resistance and glycosyltransferase gene rxpression in Island cotton[J/OL]. Molecular Plant Breeding, 1-16.) [7] 秦晶晶, 孙春玉, 张美萍, 等. 2018. 植物UDP-糖基转移酶分类、功能以及进化[J]. 基因组学与应用生物学, 1(37): 449-459. (Qin J J, Sun C Y, Zhang M P, et al.2018. UDP - glycosyl transferase classification, function and evolution[J]. Journal of Genomics and Applied Biology, 1(37): 449-459.) [8] 王勇. 2015. 拟南芥糖基转移酶基因UGT73C7激活SNC1介导的免疫反应[D]. 硕士学位论文, 山东大学, 导师: 侯丙凯, pp. 72-86. (Wang Y.2015. Arabidopsis glucosyltransferase gene UGT73C7 activates SNC1 mediated immune response[D]. Thesis of M.S., Shandong University, Supervisor: Hou B K, pp. 72-86.) [9] 朱春艳, 段绍凤, 余成华, 等. 2021. 川续断皂苷合成路径关键基因的挖掘与生物信息学分析[J/OL]. 分子植物育种, 1-6. (Zhu C Y, Duan S F, Yu C H, et al.2021. Asperosaponin synthesis path key genes of digging and bioinformatics analysis[J/OL]. Journal of Molecular Plant Breeding, 1-6. ) [10] 朱国庆. 2019. 拟南芥糖基转移酶基因UGT73C4参与抗病的作用分析[D]. 硕士学位论文, 山东大学, 导师: 侯丙凯, pp. 29-30. (Zhu G Q.2019. Analysis of the role of Arabidopsis glucosyltran -sferase gene UGT73C4 in disease resistance[D]. Thesis of M.S., Shandong University, Supervisor: Hou B K, pp. 29-30.) [11] 左涛, 赵树堂, 卢孟柱, 等. 2016. 杨树二氢黄酮醇-4-还原酶基因(DFR)的克隆及反义表达对儿茶素合成的影响[J]. 东北林业大学学报, 44(10): 49-55. (Zuo T, Zhao S T, Lu M Z, et al.2016. Cloning dihydroflavonol-4-reductase gene (DFR) of poplar and its antisense expression effects on catechin synthesis[J]. Journal of Northeast Forestry University, 44(10): 49-55.) [12] Alex R, Andrew S, Tania H, et al.2005. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana[J]. The Plant Journal, 41(1): 56-67. [13] Anna K P, Edward F S, Jaroslav P.1995. Effect of flavonoids on mycelial growth of Verticillium albo-atrum[J]. Biochemical Systematics & Ecology, 23(7-8): 683-693. [14] Bowles D, Isayenkova J, Lim E K, et al.2005. Glycosyltransferases: Managers of small molecules-Science direct[J]. Current Opinion in Plant Biology, 8(3): 254-263. [15] Breton C, Imberty A.1999. Structure/function studies of glycosyltransferases[J]. Current Opinion in Structural Biology, 9(5): 563-571. [16] Charnock S J, Davies G J.1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms[J]. Biochemistry, 38(20): 6380-6385. [17] Coutinho P M, Deleury E, Davies G J, et al.2003. An evolving hierarchical family classification for glycosyltransferases[J]. Journal of Molecular Biology, 328(2): 307-317. [18] Cui L, Yao S, Dai X, et al.2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis)[J]. Journal of Experimental Botany, 67(8): 2285-2297. [19] Ford C M, Boss P K, Høj P B.1998. Cloning and characterization of vitis vinifera UDP-Glucose: Flavonoid 3-O-Glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J]. Journal of Biological Chemistry, 273(15): 9224-9233. [20] Kalaitzis A A, Lawrence N D.2011. A simple approach to ranking differentially expressed gene expression time courses through gaussian process regression[J]. BioMed Central Bioinformatics, 12(180): 1-13. [21] Ko J H, Kim B G, Hur H G, et al.2006. Molecular cloning, expression and characterization of a glycosyltransferase from rice[J]. Plant Cell Reports, 25(7): 741-746. [22] Langlois M M, Gachon C M M, Patrick S.2005. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv. tomato in Arabidopsis[J]. Plant Physiology, 139(4): 1890-1901. [23] Lee B J, Kim S K, Choi S B, et al.2009. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation[J]. FEBS Letters, 583(13): 2315-2320. [24] Li Y, Baldauf S, Lim E K, et al.2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. Journal of Biological Chemistry, 276(6): 4338-4343. [25] Malhotra B, Onyilagha J C, Bohm B A, et al.1996. Inhibition of Tomato ringspot virus by flavonoids[J]. Phytochemistry, 43(6): 1271-1276. [26] Paquette S, Møller B L, Bak S.2003. On the origin of family 1 plant glycosyltransferases[J]. Phytochemistry, 62(3): 399-413 [27] Sandermann H.1992. Plant methbolism of xenobiotics[J]. Trends Biochemistry Science, 17(2): 82-84. [28] Shao H, He X Z, Achnine L, et al.2005. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula[J]. Plant Cell, 17(11): 3141-3154. [29] Song J T, Koo Y J, Seo H S, et al.2008. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae[J]. Phytochemistry, 69(5): 1128-1134. [30] Tai F J, Wang X L, Xu W L, et al.2008. Characterization and expression analysis of two cotton genes encoding putative UDP-glycosyltransferases[J]. Molecular Biology, 42(1): 44-51. [31] Tognetti V B, Van Aken O, Morreel K, et al.2010. Perturbation of indole-3-butyric acid homeostasis by the UDP-Glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance[J]. Plant Cell, 22(8): 2660-2679. [32] Vrielink A, Rüger W, Driessen H P, et al.1994. Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose[J]. The EMBO Journal, 13(15): 3413-3422. |
|
|
|