|
|
Mechanism of bHLH Transcription Factors in the Regulatory Network of Plant Iron Deficiency |
ZHAO An-Na, LUO Guang-Ming*, LUO Yang-Jing, SONG Dan-Dan, XIA Hong-Dong, REN Hong-Man, ZHANG Pan |
College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China |
|
|
Abstract Iron is one of the most important trace elements for plant growth and development. As an enzyme cofactor or part of the electron transport chain, it plays a role in various important metabolic processes such as plant photosynthesis, respiration and amino acid biosynthesis. To cope with iron deficiency, plants have evolved complex transcriptional regulatory networks to maintain iron homeostasis and strictly control iron uptake, transport, assimilation and storage. These regulatory networks are composed of multiple transcription factors, among which the basic helix-loop helix (bHLH) family is one of the most critical transcription factor families. In this paper, two strategies of plant response to iron deficiency were briefly summarized. This paper introduced the structure, classification and action form of bHLH transcription factors, and discusses the latest progress of bHLH transcription factors such as FER-like iron deficiency-induced transcription factor (FIT), PYE (POPEYE), upsteam regulator of iron-regulated transporter 1 (URI) and the iron deficiency regulatory protein E3 ubiquitin ligase BRUTUS (BTS) in the regulation of iron homeostasis cascade. This paper provides theoretical basis for the study of the mechanism of bHLH transcription factors in plant iron deficiency regulation network.
|
Received: 24 March 2021
|
|
Corresponding Authors:
*jzlgm88@163.com
|
|
|
|
[1] Albert N W, Butelli E, Moss S M A.et al.2021. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus[J]. New Phytologist, 231(2): 849-863. [2] Aerts N,Pereira M Ml, Van W S C M.2021. Multiple levels of crosstalk in hormone networks regulating plant defense[J]. Plant Journal, 105(2): 489-504. [3] Azodi C B, Schwarz B, Shiu S, et al.2020. Putative cis-regulatory elements predict iron deficiency responses in Arabidopsis roots[J]. Plant Physiology, 182(3): 1420-1439. [4] Babitha K C, Vemanna R S, Nataraja K N, et al.2015. Overexpression of EcbHLH57 transcription factor from Eleusine coracana L. in Tobacco confers tolerance to salt, oxidative and drought stress[J]. PLOS ONE, 10(9): e0137098. [5] Brumbarova T, Le C T T, Ivanov R, et al.2016. Regulation of ZAT12 protein stability: The role of hydrogen peroxide[J]. Plant Signal Behavior, 11: e1137408. [6] Cheng N, Yu H, Rao X, et al.2020. Alteration of iron responsive gene expression in Arabidopsis glutaredoxin S17 loss of function plants with or without iron stress[J]. Plant Signaling & Behavior, 15(6): 1758455. [7] Cheng X R, Xiong R, Liu H L, et al.2018. Basic helix-loop-helix gene family: Genome wide identification, phylogeny, and expression in Moso bamboo[J]. Plant Physiology and Biochemistry, 132(36): 104-119. [8] Chu Q, Sha Z, Maruyama H, et al.2019. Metabolic reprogramming in nodules, roots, and leaves of symbiotic soybean in response to iron deficiency[J]. Plant, Cell and Environment, 42(11): 3027-3043. [9] Cui Y, Chen C L, Cui M, et al.2018. Four Ⅳ a bHLH transcription factors are novel interactors of FIT and mediate JA of iron uptake in Arabidopsis[J]. Molecular Plant, 11(9): 1166-1183. [10] Dong H Z,Chen Q M,Dai Y Q, et al.2021. Genome-wide identification of PbrbHLH family genes, and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri)[J]. BMC Plant Biology, 21(1): 86. [11] Du J, Huang Z, Wang B, et al.2015. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Annals of Botany, 116(1): 23-34. [12] Gao F, Robe K, Dubos C.2020. Arabidopsis thaliana further insights into the role of bHLH121 in the regulation of iron homeostasis in[J]. Plant Signal Behavior, 15(10): 1795582. [13] Gratz R, Brumbarova T, Ivanov R, et al.2020. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor FER-like iron deficiency-induced transcription factor[J]. New Phyologist, 225(1): 250-267. [14] Gratz R, Manishankar P, Ivanov R, et al.2019. CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling[J]. Developmental Cell, 48(5): 726-740. [15] Heim M A, Jakoby M, Werber M, et al.2003. The basic helix loop-helix transcription factor family in plants: Agenome-wide study ofprotein structure and functional diversity[J]. Molecular Biology and Evolutionl, 20(5): 735-747. [16] Hu Y, Zhu Y, Guo A, et al.2018. Transcriptome analysis in Malus halliana roots in response to iron deficiency reveals insight into sugar regulation[J]. Molecular Genetics and Genomics, 293(6): 1523-1534. [17] Huang D Q, Dai W H.2015. Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus[J]. Plant Cell Reports, 34(7): 1211-24. [18] Kailasam S, Chien W, Yeh K.2019. Small-molecules selectively modulate iron-deficiency signaling networks in Arabidopsis[J]. Frontiers in Plant Science, 10: 8. [19] Kobayashi T, Nakanishi I R, Nishizawa N K.2014. Iron deficiency responses in rice roots[J] .Rice (N Y), 7(1): 27. [20] Kobayashi T, Nagasaka S, Senoura T, et al.2013. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation[J]. Nature Communication, 4: 2792. [21] Kobayashi T, Ozu A, Kobayashi S, et al.2019. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice[J]. Plant Molecular Biology, 101(4-5): 471-486. [22] Kurt F, Filiz E.2018. Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: Insights into iron (Fe) homeostasis[J]. BioMetals, 31(4): 489-504. [23] Lauter A N M, Rutter L, Cook D, et al.2020. Examining short-term responses to a long-term problem: RNA-Seq analyses of iron deficiency chlorosis tolerant soybean[J]. International Journal of Molecular Sciences, 21(10): 3591. [24] Lei R H, Li Y, Cai Y R, et al.2020. bHLH121 Functions as a direct link that facilitates the activation of FIT by bHLH Ⅳc transcription factors for maintaining Fe homeostasis in Arabidopsis[J]. Molecular Plant, 13(4): 634-649. [25] Li L, Gao W W, Peng Q, et al.2018. Two soybean bHLH factors regulate response to iron deficiency[J].Journal of Integrative Plant Biology, 60(7): 608-622. [26] Li X, Zhang H, Ai Q, et al.2016. Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana[J]. Plant Physiology, 170(4): 2478-2493. [27] Li Y, Sui X, Yang J, et al.2020. A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.)[J]. Biochemical and Biophysical Research Communications, 522(1): 233-239. [28] Liang G, Zhang H, Li X, et al.2017. bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana[J]. Journal of Experimental Botany, 68(7): 1743-1755. [29] Liang G, Zhang H, Li Y, et al.2020. Oryza sativa FER‐like Fe deficiency-induced transcription factor (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis[J]. Journal of Integrative Plant Biology, 62(5): 668-689. [30] Lin X Y, Ye Y Q, Fan S K, et al.2016. Increased sucrose accumulation regulates iron-deficiency responses by promoting auxin signaling in Arabidopsis plants[J]. Plant Physiology, 170(2): 907-920. [31] Ling H, Bauer P, Bereczky Z, et al.2002. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. PNAS, 99(21): 13938-13943. [32] Lingam S, Mohrbacher J, Brumbarova T, et al.2011. Interaction between the bHLH transcription factor FIT and ethylene insensitive3/ethylene insensitive3-like1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis[J]. Plant Cell, 23(5): 1815-1829. [33] Long TA, Tsukagoshi H, Busch W, et al.2010. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. The Plant Cell, 22(7): 2219-2236. [34] Maurer F, Naranjo A M, Bauer P.2018. Responses of a triple mutant defective in three iron deficiency-induced basic Helix-Loop-Helix genes of the subgroup Ⅰb(2) to iron deficiency and salicylic acid[J]. PLOS ONE, 9(6): e99234. [35] Miao L M, Gao Y Y, Zhao K, et al.2020. Comparative analysis of basic helix-loop-helix gene family among Brassica oleracea, Brassica rapa, and Brassicanapus[J]. BMC Genomics, 21(1): 178. [36] Millard P S, Kragelund B B, Burow M.2021. Evolution of a bHLH interaction motif[J]. International Journal of Molecular Sciences, 22(1): 447. [37] Millard P S, Weber K, Kragelund B B, et al.2019. Specificity of MYB interactions relies on motifs in ordered and disordered contexts[J]. Nucleic Acids Research, 47(18): 9592-9608. [38] Naranjo-Arcos M A, Maurer F, Meiser J, et al.2017. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ⅰb bHLH039 protein[J]. Scientific Reports, 7(1): 10911. [39] Ogo Y.2006. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants[J]. Journal of Experimental Botany, 57(11): 2867-2878. [40] Ortolan F, Fonini L S, Pastori T, et al.2021. Tightly controlled expression of OsbHLH35 is critical for anther development in rice[J]. Plant Science, 302: 110716. [41] Pires N, Dolan L.2010. Origin and diversification of basic-helix-loop-helixproteins in plants[J]. Molecular Biology and Evolution, 27(4): 862-874. [42] Qi T, Huang H, Wu D, et al.2014. Arabidopsis DELLA and JAZ proteins bind the WD-Repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. The Plant Cell, 26(3): 1118-1133. [43] Ramirez L, Zabaleta E J, Lamattina L.2010. Nitric oxide and frataxin: Two players contributing to maintain cellular iron homeostasis[J]. Annals of Botany, 105(5): 801-810. [44] Rodríguez-Celma J, Connorton J M, Kruse I, et al.2019. Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling[J]. Proceedings of the National Academy of Sciences of the USA, 116(35): 17584-17591. [45] Santos C S, Rodrigues E, Ferreira S, et al.2021. Foliar application of 3-hydroxy-4-pyridinone Fe-chelate [Fe(mpp)] induces responses at the root level amending iron deficiency chlorosis in soybean[J]. Physiologia Plantarum, 173(1): 235-245. [46] Schwarz B, Bauer P.2020. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures[J]. Journal of Experimental Botany, 71(5): 1694-1705. [47] Selote D, Matthiadis A, Gillikin J W, et al.2018. The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors[J]. Plant, Cell & Environment, 41(10): 2463-2474. [48] Siberil Y, Doireau P, Gantet P.2001. Plant bZIP G-box binding factors: Modular structure and activation mechanisms[J]. European Journal of Biochemistry, 268(22): 5655-5666. [49] Sivitz A, Grinvalds C, Barberon M, et al.2011. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses[J]. Plant Journal, 66(6): 1044-1052. [50] Sivitz A B, Hermand V, Curie C, et al.2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway[J]. PLOS ONE, 7(9): e44843. [51] Tanabe N, Noshi M, Mori D, et al.2019. The basic helix-loop helix transcription factor, bHLH11 functions in the ironuptake system in Arabidopsis thaliana[J]. Journal of Plant Research, 132(1): 93-105. [52] Thorstensen T, Grini P E, Mercy I S, et al.2008.The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTEDMICROSPORES (AMS)[J]. Plant Molecular Biology, 66(1-2): 47-59. [53] Tian Y, Pu X, Yu H, et al.2020. Genome-Wide characterization and analysis of bHLH transcription factors related to crocin biosynthesis in Gardenia jasminoides Ellis (Rubiaceae)[J]. BioMed Research International, 2020(1): 1-11. [54] Tissot N, Robe K, Gao F, et al.2019. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3[J]. New Phytologist, 223(3): 1433-1446. [55] Wang L U, Ying Y, Narsai R, et al.2013. Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa[J]. Plant, Cell & Environment, 36(1): 224-236. [56] Wang M, Gong J, Bhullar N K.2020. Iron deficiency triggered transcriptome changes in bread wheat[J]. Computational and Structural Biotechnology Journal, 18: 2709-2722. [57] Wang N, Cui Y, Liu Y, et al.2013. Requirement and functional redundancy of Ⅰb subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana [J]. Molecular Plant, 6(2): 503-513. [58] Wu H, Ling H.2019. FIT-binding proteins and their functions in the regulation of Fe homeostasis[J]. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2019.00844. [59] Yin L L, Wang Y, Yuan M D, et al.2014. Characterization of MxFIT, an iron deficiency induced transcriptional factor in Malus xiaojinensis[J] .Plant Physiology and Biochemistry, 75c: 89-95. [60] Yokoyama C, Wang X, Briggs M R, et al.1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene[J]. Cell, 75(1): 187-197. [61] Yuan Y X, Wu H L, Wang N, et al.2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell research, 18(3):385-397. [62] Zhang H M, Li Y, Yao X N, et al.2017. Positive regulator of iron homeostasis1, OsPRI1, facilitates iron homeostasis[J]. Plant Physiology, 175(1): 543-554. [63] Zhang H, Li Y, Pu M, et al.2019. Oryza sativa positive regulator of iron deficiency response2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis[J]. Plant, Cell& Environment, 43(1): 261-274. [64] Zhang J, Liu B, Li M S, et al.2015. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESIS TANT3 and modulates iron homeostasis in Arabidopsis[J]. The Plant Cell, 27(3): 787-805. [65] Zhang Y, Wu H L, Wang N, et al, et al.2014. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis[J]. New Phyologist, 203(3): 770-783. [66] Zhao Q, Ren Y, Wang Q, et al.2016. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple[J]. Plant Biotechnology Journal, 14(7): 1633-1645. [67] Zhao M, Song A P, Li P Let al.2014. A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum[J]. Science Reports, 4: 6694. [68] Zheng L, Ying Y, Wang L, et al.2010. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa[J]. BMC Plant Biology, 10(1):16. [69] Zheng L Q, Fujii Miho, Yamaji Naoki, et al.2011. Isolation and characterization of a barley yellow stripe-like gene, HvYSL5[J]. Plant Cell Physiologist, 52(5): 765-74. [70] Ziegler J, Schmidt S, Strehmel N, et al.2017. Arabidopsis transporter ABCG37/PDR9 contributes primarily highly oxygenated coumarins to root exudation[J]. Scientific Reports, 7(1):3704. |
|
|
|