|
|
Research Progress of Rapid Polymerase Chain Reaction Equipment |
LI Jia-Le1, LIN Sheng-Hao1, XU Wen-Tao1,2,* |
1 College of Food Science and Nutritional Engineering,China Agricultural University, Beijing 100083, China; 2 Department of Nutrition and Health, China Agricultural University, Beijing 100083, China |
|
|
Abstract Polymerase chain reaction (PCR) is widely used in many fields because of its unique advantages. Traditional PCR technology takes a long time, which is generally more than 60 min, so a method of fast PCR is proposed. This paper focuses on the fast PCR reaction device. According to the heat transfer mode, the contact (continuous flow, fixed chamber, oscillating swing) and non-contact (infrared, laser, metal nanostructure, microwave, electromagnetic induction) thermal cycling instruments are introduced and analyzed respectively. Finally, the operation integration of rapid PCR technology, the further research and development of metal nanostructures and the commercial production of rapid thermal cycling instrument are discussed and prospected. This review provides a reference for the research and development of low-cost, miniaturized, automatic and high-throughput heat cycle instrument in the future.
|
Received: 28 April 2021
|
|
Corresponding Authors:
*xuwentao@cau.edu.cn
|
|
|
|
[1] 杜秀敏, 齐法莲, 徐军克. 2004. 临床诊断中的实时PCR技术(文献综述)[J]. 放射免疫学杂志, 17(6): 461-462. (Du X M, Qi F L, Xu J K.2004. Real-time PCR technology in clinical diagnosis (literature review)[J]. Journal of Radioimmunology, 17(6): 461-462.) [2] 郭宏伟, 赵绪永, 李华玮, 等. 2021. 数字PCR技术在动物疫病诊断中的应用进展[J]. 动物医学进展, 42(2): 102-106. (Guo H W, Zhao X Y, Li H W, et al.2021.Application progress of digital PCR technology in the diagnosis of animal diseases[J]. Advances in Animal Medicine, 42(2): 102-106.) [3] 卢柯. 2017. 金属纳米结构材料[J]. 科学观察, (12): 21-22. (Lu K. 2017. Metal nanostructured materials[J]. Sience Focus, (12): 21-22.) [4] 王娟, 卞国志, 王贵平, 等. 2017. 恒温热隔绝式PCR技术的原理与应用[J]. 动物医学进展, 38(12): 114-118. (Wang J, Bian G Z, Wang G P, et al.2017. Principle and application of constant temperature thermally isolated PCR technology[J]. Advances in Animal Medicine, 38(12): 114-118.) [5] Arnheim N, Erlich H.1992. Polymerase chain reaction strategy[J]. Annual Review of Biochemistry, 61(1): 131-156. [6] Bartsch M S, Edwards H S, Lee D, et al.2015. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR[J]. PLOS ONE, 10(3): 1-35. [7] Bell J.1989. Out of chains[J]. Nature, 341(6239): 196-196. [8] Borca-Tasiuc D A, Garg P, Hella M, et al.2018. DNA amplification by PCR using low cost, programmable microwave heating[J]. TechConnect Briefs, 2(1): 577-580. [9] Brunklaus S, Hansen-Hagge T, Erwes J, et al.2012. Fast nucleic acid amplification for integration in point-of-care applications[J]. Electrophoresis, 33(21): 3222-3228. [10] Canfield S J, Bowen B W.2021. A rapid PCR-RFLP method for species identification of the eastern Pacific horn sharks (genus Heterodontus)[J]. Conservation Genetics Resources, 13(1): 79-84. [11] Chan K, Wong P, Hardick J, et al.2016. A rapid and low-cost PCR thermal cycler for infectious disease diagnostics[J]. PLOS ONE, 11(2): 1-17. [12] Chen K, Chao J, Yuan Y, et al.2014. Application of rapid PCR to authenticate medicinal snakes[J]. Zhongguo Zhong Yao Za Zhi, 39(19): 3673-3677. [13] Chen P, Nikitopoulos D E, Soper S A, et al.2008. Temperature distribution effects on micro-CFPCR performance[J]. Biomedical Microdevices, 10(2): 141-152. [14] Chen P, Park D S, You B, et al.2010. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor[J]. Sensors and Actuators B: Chemical, 149(1): 291-300. [15] Cheng J, Hsieh C, Chuang Y, et al.2005. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient[J]. Analyst, 130(6): 931-940. [16] Chiou J, Matsudaira P, Sonin A, et al.2001. A closed-cycle capillary polymerase chain reaction machine[J]. Analytical Chemistry, 73(9): 2018-2021. [17] Cho B, Lee S H, Song J, et al.2019. Nanophotonic cell lysis and polymerase chain reaction with gravity-driven cell enrichment for rapid detection of pathogens[J]. ACS Nano, 13(12): 13866-13874. [18] Crews N, Wittwer C, Gale B.2007. Thermal gradient PCR in a continuous-flow microchip[J]. Proceedings of SPIE - The International Society for Optical Engineering, 6465(2): 187-195. [19] Crews N, Wittwer C, Gale B.2008. Continuous-flow thermal gradient PCR[J]. Biomedical Microdevices, 10(2): 187-195. [20] Curtis Saunders D, Holst G L, Phaneuf C R, et al.2013. Rapid, quantitative, reverse transcription PCR in a polymer microfluidicchip[J]. Biosensors and Bioelectronics, 2013, 44(1): 222-228. [21] Deng W.2007. A Review on real-time Q-PCR technology[J]. Biotechnology Bulletin, 0(5): 93-95,103. [22] Ding Y K, Shen J, Li-Li M A.2010. Application of test paper in detecting transgenic soybean[J]. Science and Technology of Cereals,Oils and Foods, 18(2):45-46. [23] Easley C J, Karlinsey J M, Bienvenue J M, et al.2006. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability[J]. Proceedings of the National Academy of Sciences of the USA, 103(51): 19272-19277. [24] Fermér C, Nilsson P, Larhed M.2003. Microwave-assisted high-speed PCR[J]. European Journal of Pharmaceutical Sciences, 18(2): 129-132. [25] Fernández-Carballo B L, McGuiness I, McBeth C, et al.2016. Low-cost, real-time, continuous flow PCR system for pathogen detection[J]. Biomedical Microdevices, 18(2): 1-10. [26] Foulkes N S, Pandolfi De Rinaldis P P, Macdonnell J, et al.1988. Polymerase chain reaction automated at low cost[J]. Nucleic acids research, 16(12): 5687-5688. [27] Furutani S, Naruishi N, Saito M, et al.2014. Rapid and highly sensitive detection by a real-time polymerase chain reaction using a chip coated with its reagents[J]. Analytical Sciences, 30(5): 569-574. [28] Gevertz J L D S.2005. Mathematical model of real-time PCR kinetics.[J]. Biotechnology and bioengineering, 92(3): 346-355. [29] Goto Y Y G F.2020. Design of a multiplex quantitative reverse transcription-PCR system to simultaneously detect 16 pathogens associated with bovine respiratory and enteric diseases[J]. Journal of applied microbiology, 129(4): 832-847. [30] Huang C, Chang P, Liu C, et al.2015. New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications[J]. Nanoscale, 7(29): 12689-12697. [31] Jiao Z, Nguyen N, Huang X.2007. Thermocapillary actuation of liquid plugs using a heater array[J]. Sensors and Actuators A: Physical, 140(2): 145-155. [32] Khandurina J, McKnight T E, Jacobson S C, et al.2000. Integrated system for rapid PCR-based DNA analysis in microfluidic devices[J]. Analytical Chemistry, 72(13): 2995-3000. [33] Kim H, Dixit S, Green C, et al.2009a. Nanodroplet real-time PCR system with laser assisted heating[J]. Optics Express, 17(1): 218-227. [34] Kim H, Vishniakou S, Faris G W.2009b. Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays[J]. Lab on a Chip, 9(9): 1230-1235. [35] Kim J, Lee S H, Park H, et al.2010. Microheater based on magnetic nanoparticle embedded PDMS[J]. Nanotechnology, 21(16): 165102-165108. [36] Kopp M U, de Mello A J, Manz A.1998. Chemical amplification: Continuous-flow PCR on a chip[J]. Science, 280(5366): 1046-1046. [37] Lee J, Cheglakov Z, Yi J, et al.2017. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays[J]. Journal of the American Chemical Society, 139(24): 8054-8057. [38] Lee S H, Park S, Kim B N, et al.2019. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics[J]. Biosensors and Bioelectronics, 141(15): 1-18. [39] Li T, Chang C, Chang P, et al.2016. Handheld energy-efficient magneto-optical real-time quantitative PCR device for target DNA enrichment and quantification[J]. NPG Asia Materials, 8(6): 1-7. [40] Li Z, Li Y, Sekine S, et al.2019. Design and fabrication of portable continuous flow PCR microfluidic chip for DNA replication[J]. Biomedical Microdevices, 22(1): 1-7. [41] Lin Y, Huang M, Young K, et al.2000. A rapid micro-polymerase chain reaction system for hepatitis C virus amplification[J]. Sensors and Actuators B: Chemical, 71(1): 2-8. [42] Liu J, Enzelberger M, Quake S.2002. A nanoliter rotary device for polymerase chain reaction[J]. Electrophoresis, 23(10)5: 1531-1536. [43] López-López P, Martínez-López M C, Boldo-León X M, et al.2017. Detection and differentiation of Entamoeba histolytica and Entamoeba dispar in clinical samples through PCR-denaturing gradient gel electrophoresis[J]. Brazilian Journal of Medical and Biological Research, 50(4): 1-17. [44] Marchiarullo D J, Sklavounos A H, Oh K, et al.2013. Low-power microwave-mediated heating for microchip-based PCR[J]. Lab on a Chip, 13(17): 3417-3425. [45] Moschou D, Vourdas N, Kokkoris G, et al.2014. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification[J]. Sensors and Actuators B: Chemical, 199(aug): 470-478. [46] Münchow G, Dadic D, Doffing F, et al.2005. Automated chip-based device for simple and fast nucleic acid amplification[J]. Expert Review of Molecular Diagnostics, 5(4): 613-620. [47] Nagai H, Murakami Y, Yokoyama K, et al.2001. High-throughput PCR in silicon based microchamber array[J]. Biosensors and Bioelectronics, 16(9): 1015-1019. [48] Nakano H, Matsuda K, Yohda M, et al.1994. High speed polymerase chain reaction in constant flow[J]. Bioscience, Biotechnology, and Biochemistry, 58(2): 349-352. [49] Navarro J, Lerouge F, Micouin G, et al.2014. Plasmonic bipyramids for fluorescence enhancement and protection against photobleaching[J]. Nanoscale, 6(10): 5138-5145. [50] Neuzil P, Zhang C, Pipper J, et al.2006. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes[J]. Nucleic Acids Research, 34(11): 1-9. [51] Njoroge S, Witek M, Battle K, et al.2011. Integrated continuous flow polymerase chain reaction and micro-capillary electrophoresis system with bioaffinity preconcentration[J]. Electrophoresis, 32(22): 3221-3232. [52] Obeid P J, Christopoulos T K, Crabtree H J, et al.2003. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection[J]. Analytical Chemistry, 75(2): 288-295.9 [53] Oda R P, Strausbauch M A, Huhmer A F R, et al.1998. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA[J]. Analytical Chemistry, 70(20): 4361-4368. [54] Oh K W, Park C, Namkoong K, et al.2005. World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays[J]. Lab on a Chip, 5(8): 845-850. [55] Pal D, Venkataraman V.2002. A portable battery-operated chip thermocycler based on induction heating[J]. Sensors and Actuators A: Physical, 102(1): 151-156. [56] Park N, Kim S, Hahn J H.2003. Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction[J]. Analytical Chemistry, 75(21): 6029-6033. [57] Pipper J, Zhang Y, Neuzil P, et al.2008. Clockwork PCR including sample preparation[J]. Angewandte Chemie (International ed. in English), 47(21): 3900-3904. [58] Roche P J R, Beitel L K, Khan R, et al.2012. Demonstration of a plasmonic thermocycler for the amplification of human androgen receptor DNA[J]. Analyst, 137(19): 4475-4481. [59] Roche P J R, Najih M, Lee S S, et al.2017. Real time plasmonic qPCR: How fast is ultra-fast? 30 cycles in 54 seconds[J]. Analyst, 142(10): 1746-1755. [60] Rollo F, Amici A, Salvi R.1988. A simple and low cost DNA amplifier[J]. Nucleic Acids Research, 16(7): 3105-3106. [61] Saiki R K.1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase[J]. Science, 239(4839): 487-491. [62] Shaw K J, Docker P T, Yelland J V, et al.2010. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling[J]. Lab on a Chip, 10(13): 1725-1728. [63] Silverio R, Curiel A, Dominguez J, et al.2020. Genetic predisposition to type II diabetes in the hispanic population in relation to SNP rs2070744 on the eNOS gene[J]. The FASEB Journal, 34(S1): 1-1. [64] Son J H, Cho B, Hong S, et al.2015. Ultrafast photonic PCR[J]. Light: Science & Applications, 4(7): 1-7. [65] Su Y, Chu H, Tian J, et al.2021. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions[J]. TrAC Trends in Analytical Chemistry, 137(1): 1-17. [66] Sun Y, Kwok Y, Lee P, et al.2009. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip[J]. Analytical and Bioanalytical Chemistry, 394(5): 1505-1508. [67] Sundberg S O, Wittwer C T, Howell R M, et al.2014. Microfluidic genotyping by rapid serial PCR and high-speed melting analysis[J]. Clinical Chemistry, 60(10): 1306-1313. [68] Swerdlow H, Dew-Jager K, Gesteland R F.1993. Rapid cycle sequencing in an air thermal cycler[J]. BioTechniques, 15(3): 512-519. [69] Tachibana H, Saito M, Shibuya S, et al.2015. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform[J]. Biosensors and Bioelectronics, 74(1): 725-730. [70] Terazono1 H, Hattori1 A,Takei1 H, et al.2008. Development of 1480 nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition[J]. The Japan Society of Applied Physics, 47(6): 5212-5216. [71] Tian L, Cronin T, Weizmann Y.2014. Enhancing-effect of gold nanoparticles on DNA strand displacement amplifications and its application to an isothermal telomerase assay[J]. Chemical Science, 5(11): 4153-4162. [72] Trauba J, Wittwer C.2017. Microfluidic extreme PCR: <1 minute DNA amplification in a thin film disposable[J]. Journal of Biomedical Science and Engineering, 10(5): 219-231. [73] Tzivelekis C, Dalgarno K.2020. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification[J]. Plos One,15(10): 1-21. [74] VanGuilder H D, Vrana K E, Freeman W M.2008. Twenty-five years of quantitative PCR for gene expression analysis[J]. BioTechniques, 44(5): 619-626. [75] Verheij S, Harteveld J, Sijen T.2012. A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples[J]. Forensic Science International: Genetics, 6(2): 167-175. [76] Vu B V, Litvinov D, Willson R C.2008. Gold nanoparticle effects in polymerase chain reaction: Favoring of smaller products by polymerase adsorption[J]. Analytical Chemistry, 80(14): 5462-5467. [77] Wong G, Wong I, Chan K, et al.2015. A rapid and low-cost PCR thermal cycler for low resource settings[J]. PloS one, 10(7): 1-20. [78] Yang J, Liu Y, Rauch C B, et al.2002. High sensitivity PCR assay in plastic micro reactors[J]. Lab on a Chip, 2(4): 179-187. [79] Yoon D, Lee Y, Lee Y, et al.2002. Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip[J]. Journal of Micromechanics and Microengineering, 12(6): 813-823. [80] Yu Y, Li B, Baker C A, et al.2012. Quantitative polymerase chain reaction using infrared heating on a microfluidic chip[J]. Analytical Chemistry, 84(6): 2825-2829. [81] Zhang C, Li Y, Wang H.2011. Rapid amplification and detection of foodborne pathogenic rotavirus by continuous-flow reverse transcription-polymerase chain reaction integrated with online fluorescence analysis[J]. Chinese Journal of Analytical Chemistry, 39(5): 645-651. [82] Zhang H, Li H, Zhu H, et al.2019. Revealing the secrets of PCR[J]. Sensors and Actuators B: Chemical, 298(1): 1-6. [83] Zhou L, Peng N, Hu F.2019. Temperature-uniformity study on transverse flux induction heating applied to rapid PCR[J]. IOP Conference Series: Earth and Environmental Science, 242(3): 1-7. |
|
|
|